![Image](GetFile.aspx?File=/datamining/SVM/svm.png)
- Linear Support Vector Machine
Given a set of points
![Image](GetFile.aspx?File=/datamining/SVM/xi.png)
with label
![Image](GetFile.aspx?File=/datamining/SVM/yi.png)
The SVM finds a hyperplane defined by the pair (w,b)
(where w is the normal to the plane and b is the distance from the origin)
s.t.
![Image](GetFile.aspx?File=/datamining/SVM/w.png)
![Image](GetFile.aspx?File=/datamining/SVM/explain.png)
- What if the data is not linearly separable?
- Project the data to high dimensional space where it is linearly separable and then we can use linear SVM – (Using Kernels)
![Image](GetFile.aspx?File=/datamining/SVM/svm.cont.png)
Classification using SVM (w,b)
![Image](GetFile.aspx?File=/datamining/SVM/wb.png)
In non linear case we can see this as
![Image](GetFile.aspx?File=/datamining/SVM/Kernel.png)
Kernel – Can be thought of as doing dot product in some high dimensional space
Example of Non-linear SVM
![Image](GetFile.aspx?File=/datamining/SVM/example1.png)
![Image](GetFile.aspx?File=/datamining/SVM/example2.png)
SVM
- Relatively new concept
- Nice Generalization properties
- Hard to learn – learned in batch mode using quadratic programming techniques
- Using kernels can learn very complex functions
SVM Related Links