Neural Networks

Modified on 2010/05/17 11:51 by Administrator — Categorized as: Data Mining

Neural Networks


A Neuron

Image


Image

For Example

Image

Multi-Layer Perceptron

Image

Network Training


Steps Initialize weights with random values Feed the input tuples into the network one by one For each unit Compute the net input to the unit as a linear combination of all the inputs to the unit Compute the output value using the activation function Compute the error Update the weights and the bias

Network Pruning and Rule Extraction

Network pruning Fully connected network will be hard to articulate N input nodes, h hidden nodes and m output nodes lead to h(m+N) weights Pruning: Remove some of the links without affecting classification accuracy of the network Extracting rules from a trained network Discretize activation values; replace individual activation value by the cluster average maintaining the network accuracy Enumerate the output from the discretized activation values to find rules between activation value and output Find the relationship between the input and activation value Combine the above two to have rules relating the output to input