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The Transverse Mercator projection is the basis of many maps cover-
ing individual countries, such as Australia and Great Britain, as well

as the set of American UTM projections covering the whole worl
(other than the polar regions). Such maps are invariably covered by a
set of grid lines. It is important to appreciate the following two fact
about the Transverse Mercator projection and the grids covering it:

1. Only one grid line runs true north—south. Thus in Britain onl
the grid line coincident with the meridian at\ is true: all
others are slightly distorted. The UTM series is a set of 6
projections covering a width of of°6 latitude: the grid lines
run true north—south only on the central meridians’&t, °E,
15°E, ...

2. The scale on the maps derived from Transverse Mercator pfo-
jections is not uniform: it is a function of position. For ex-
ample the Landranger maps of the Ordnance Survey of Great
Britain have a nominal scale of 1:50000: this value is only ex-
act on two slightly curved lines almost parallel to the central
meridian at 2W.

The above facts are unknown to the majority of map users. They are
the subject of this article together with the presentation of formulae
relating latitude and longitude to grid coordinates.




Preface

For many years | had been intrigued by the the statement on the (British) Ordnance
Survey maps pointing out that the grid lines are not exactly aligned with meridians and par-
allels: four precise figures give the magnitude of the deviation at each corner of the map
sheets. My first retirement project has been to find out exactly how these figures are calcu-
lated and this led to an exploration of all aspects of the Transverse Mercator projection on
an ellipsoid of revolution (TME). This projection is also used for the Universal Transverse
Mercator series of maps covering the whole of the Earth, except for the polar regions.

The formulae for TME are given in many books and web pages but the full derivations
are only to be found in original publications which are not readily accessible: therefore | de-
cided to write a short article explaining the derivation of the formulae. Pedagogical reasons
soon made it apparent that it would be necessary to start with the normal and transverse
Mercator projection on the sphere before going on to discuss the normal and transverse
Mercator projection on the ellipsoid. As a result the length of this document has doubled
and redoubled, but | have resisted the temptation to cut out the details which would be
straightforward for a professional but daunting for a ‘layman’. The mathematics involved
is not difficult (depending on your point of view) but it does require the rudiments of com-
plex analysis for the crucial steps. On the other hand the algebra gets fairly heavy at times;
Redfearn (see bibliography) talks of a “a particularly tough spot of work” and Hotine talks
of reversing series by “brute force and algebra’—so be warned. To make this article as
self-contained as possible | have added a number of appendices covering the required math-
ematics.

My sources for the TME formulae are to be found in Empire Survey Review dating from
the nineteen forties to sixties. The actual papers are fairly terse, as is normal for papers by
professionals for their peers, and their perusal will certainly not add to the details presented
here. Books on mathematical cartography are fairly thin on the ground, moreover they
usually try to cover all types of projections whereas we are concerned only with Mercator
projections. The few that | found to be of assistance are listed in the bibliography.

| would like to thank Harry Kogon for reading, commenting on and even checking the
mathematics outlined in these pages. Any remaining errors (and typographical slips) must
be attributed to myself—when you find them please send an email to the address below.

Peter Osborne
Edinburgh, 2008

peter.1@mercator.myzen.co.uk
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Chapter

Introduction

Geodesy and the Figure of the Earth

Geodesy is the science concerned with the study of the exact size and shape of the Earth in
conjunction with the analysis of the variations of the Earth’s gravitational field. This com-
bination of topics is readily appreciated when one realizes that (a) in traditional surveying
the instruments were levelled with respect to the gravitational field and (b) in modern satel-
lite techniques we must consider the satellite as an object moving freely in the gravitational
field of the Earth. Geodesy is the scientific basis for both traditional triangulation on the
actual surface of the earth and modern surveying using GPS methods.

Whichever method we use, traditional or satellite, it is vital to work with well defined
reference surfaces to which measurements of latitude and longitude can be referred. Clearly,
the actual topographic surface of the Earth is very unsuitable as a reference surface since
it has a complicated shape, varying in height by up to twenty kilometres from the deep-
est oceans to the highest mountains. A much better reference surface is the gravitational
equipotential surface which coincides with the mean sea level continued under the conti-
nents. This surface is called theoidand its shape is approximately a flattened sphere but
with many slight undulations due to the gravitational irregularities arising from the inhomo-
geneity in the Earth’s crust.

However, for the purpose of high precision geodetic surveys, the undulating geoid is not
a good enough reference surface and it is convenient to introduce a mathematically exact
reference surface which is a good fit to the shape of the geoid. The surface which has been
used for the last three hundred years is the olddlipsoid of revolution formed when
an ellipse is rotated about its minor axis. We shall abbreviate ‘ellipsoid of revolution’ to
simply ellipsoid in this article, in preference to the tespheroid which is used in much of
the older literature. (We shall not consider triaxial ellipsoids which do not have an axis of
symmetry). The shape and size of the reference ellipsoid which approximates the geoid is
usually called thdigure of the Earth.
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The earliest accurate determinations of the figure of the earth were made by comparing
two high precision meridian arc surveys, each of which provided a measure of the distance
along the meridian per unit degree at a latitude in the middle of each arc. Two such mea-
surements, preferably at very different latitudes, are sufficient to determine two parameters
which specify the ellipsoid—the major axistogether with the minor axi& or, more usu-
ally, the combination of the major axis with the flattenifigdefined below). For example,
in the first half of the eighteenth century, French scientists measured a meridian arc of about
one degree of latitude in Lapland (crossing the Arctic circle) and a second arc of about
three degrees of latitude in Peru (crossing the equator) and confirmed for the first time the
oblateness of the ellipsoid. In 1830 Everest calculated an ellipsoid using what he took to
be the best two arcs, an earlier Indian Arc surveyed by his predecessor Lambton and once
again the arc of Peru. As more and longer arcs were measured the results were combined
to give more accurate ellipsoids. For example Airy discussed sixteen arcs before arriving at
the result he published in 1830:

a =6377563.4m  b=6356256.9m  f=1/299.32  [Airy1830]  (1.1)

where theflattening f, defined aga — b)/a, gives a measure of the departure from the
sphere. Similarly Clarke used eight arcs to arrive at his 1866 ellipsoid:

a = 6378206.4m b = 6356583.8m f=1/294.98 [Clarke1866] 1.2)

Modern satellite methods have introduced global ellipsoid fits to the geoid, that for the
World Geodetic System of 1972 being

a = 6378135m b = 6356750.5m f=1/298.26 [WGS72] (1.3)
and that for the Geodetic Reference System of 1980 (GRS80) being
a = 6378137m b = 6356752.3m f=1/298.26 [GRS80] (1.4)

Further satellite models are under development.

There are many ellipsoids in use today and they differ by no more than a kilometre
from each other, with an equatorial radius of approximately 6378km (3963 miles) and a
polar radius of 6356km (3949 miles) shorter by approximately 22km (14 miles). Note that
modern satellite ellipsoids, whilst giving good global fits, are actually poorer fig®ine
regions surveyed on a best-fit ellipsoid derived by traditional (pre-satellite) methods.

The bibliography lists some web surveys of geodesy and also one or two advanced
textbooks which give detailed coverage of the subject.

Topographic surveying

The aim of a topographic survey is to provide highly accurate maps of some region ref-
erenced to a specifidatum. By this we mean a choice of a definite reference ellipsoid
together with a precise statement as to how the ellipsoid is related to the area under survey.
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For example we could specify how the centre of the selected ellipsoid is related to the cho-
sen origin of the survey and also how the orientation of the axes of the ellipsoid are related
to the vertical and meridian at the origin. It is very important to realize that the choice of

datum for any such survey work is completely arbitrary as long as it is a reasonable fit to
the geoid in the region of the survey. The chosen datum is usually stated on the final maps.

As an example, the maps produced by the Ordnance Survey of Great Britain (OSGB) are
defined with respect to a datum known as OSGB36 (established for the 1936 re-triangulation)
which is still based on the Airy 1830 ellipsoid which was chosen at the start of the original
triangulation in the first half of the nineteenth century. This ellipsoid is indeed a good fit to
the geoid under Britain but it is a poor fit everywhere else on the globe so it is not used for
mapping any other country. The OSGB36 datum defines how the Airy ellipsoid is related
to the the ground stations of the survey. Originally, in the nineteenth century, the origin
was chosen at Greenwich observatory but, for the 1936 re-triangulation no single origin
was chosen, rather the survey was adjusted so that the latitude and longitude of 11 control
stations remained as close as possible to their values established in the original nineteenth
century triangulation.

Until 1983, the United States, Canada and Mexico used the North American datum
established in 1927, namely NAD27. This is based on the Clarke (1866) ellipsoid tied to
an origin at Meades Ranch in Kansas where the latitude, longitude, elevation above the
ellipsoid and azimuth toward a second station (Waldo) were all fixed. Likewise, much
of south east Asia uses the Indian datum, 1D1830, which is based on the Everest (1830)
ellipsoid tied to an origin at Kalianpur. The modern satellite ellipsoids used in datums such
as WGS72, GRS80, WGS84 are defined with respect to the Earth’s centre of mass and a
defined orientation of axes.

In all, there are two or three hundred datums in use over the world, each with a chosen
reference ellipsoid attached to some origin. The ellipsoids used in the datums do not agree
in size or position and a major problem for geodesy (and military planners in particular)
is how to tie these datums together so that we have an integrated picture of the world’s
topography. In the past datums were tied together where they overlapped but now we can
relate each datum to a single geocentric global datum determined by satellite.

Once the datum for a survey has been chosen we would traditionally have proceeded
with a high precision triangulation from which, by using the measured angles and baseline,
we can calculate the latitude and longitude of every triangulation station from assumed
values of latitude and longitude at the origin. Note that it is the latitude and longitude values
on the reference ellipsoid ‘beneath’ every triangulation station that are calculated and used
as input data for the map projections. It is important to realise that once a datum has been
chosen for a survey in some region of the Earth (such as Britain or North America) then
it should not be altered, otherwise the latitude and longitude of every feature in the survey
region would have to be changed (by recalculating the triangulation data). But this has
already happened and it will happen again. For example the North American datum NAD27
was replaced by a new datum NAD83 necessitating the recalculation of all coordinates, with
resulting changes in position ranging from 10m to 200m. If (when) we use one of the new
global datums fitted by satellite technology as the basis for new maps then the latitude and
longitude values of every feature will change slightly again.
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Cartography

A topographic survey produces a set of geographical locations (latitude and longitude) ref-
erenced to some specified ellipsoid. We are then faced with the problem of cartography,
the representation of the latitude—longitude data on the ellipsoid by a two-dimensional map.
There are an infinite number of projections which address this problem but in this article we
consider only the normal (N) and transverse (T) Mercator projections, first on the sphere (S)
and then on the ellipsoid (E). We shall abbreviate these projections as NMS, TMS, NME
and TME: they are considered in full detail in Chapters 2, 3, 6 and 7 respectively. At a
later date Chapter 10 may cover the oblique Mercator projection. Details of all these pro-
jections are givenyithout derivationsin the book by Snyder entitled ‘Map Projections—A
Working Manual’. (See bibliography).

We define a maprojection by giving two functionse(¢, A) andy(¢, A) which specify
the plane Cartesian coordinates y) corresponding to the latitude and longitude coordi-
nates(¢, \). For the above projections, other than the oblique Mercator, the fundamental
origin is taken as a poir@® on the equator, the positiveaxis is taken as the eastward direc-
tion of the projected equator and the positivaxis is taken as the northern direction of the
projected meridian throug®. This convention agrees with that used in Snyder’s book but
beware other conventions! Many older texts, as well as most current ‘continental’ sources,
adopt a convention with the-axis as north and thg-axis as sometimes east and sometimes
west!

The criteria for a faithful map projection

There are several basic criteria for a faithful map projection but it is important to understand
that it isimpossibleto satisfy all these criteria at the same time. This is simply a reflection
of the fact that it is impossible to deform a sphere or ellipsoid into a plane without creases
or cuts. Thus allmapsare compromises to some extent and they must fail to meet at least
one of the following.

1. One-to-one correspondence of pointshis will normally be the case for large scale
maps of small regions but maps of the whole Earth will usually fail this criterion.
Points at which the map fails to be one-to-one are called singular points. For example,
in the normal Mercator projection we shall see that the poles are singular because they
project into lines.

2. Uniformity of point (or local) scaleBy point scale we simply mean the ratio of the
distance between two nearby points on the map and the corresponding points on the
ground. Ideally the point scale factor should have the same value at all points. This
criterion isneversatisfied. In the Mercator projections the scale is ‘true’ only on two
lines at the most.
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3. Isotropy of point scale Ideally the scale factor would be isotropic (independent of
direction) at any point and as a corollary the shape of smgll region would be
unaltered—such a projection is said todsehomorphic (right shape). By ‘small’ we
mean that, at some level of measurement accuracy, the magnitude of the scale does
not vary over the small region. This conditimsatisfied by the Mercator projections.

4. Conformal representationConsider any two lines on the surface of the Earth which
intersect at a poinP at an angl®. Let P’ andd’ be the corresponding point and angle
on the map projection. The map is said to be conformélsf 6’ at all non-singular
points of the map. This has the consequence that the shape of a local feature (such
as a short stretch of coastline or a river) is well represented even though there will be
distortion over large areas. All of the Mercator projections satisfy this criterion.

5. Equal area We may wish to demand that equal areas on the Earth have equal areas
on the projection. This is considered to be ‘politically correct’ by many proponents
of the Peters projection but the downside is that such equal area projections distort
shapes in the large. The Mercator projections are not equal area projections and they
also distort shapes.

In summary the normal Mercator projection has the properties: (a) there are singular
points at the poles, (b) the point scale is isotropic (so the map is orthomorphic) but the
magnitude of the scale varies with latitude, being true on two parallels at most, (c) the
projection is conformal, (d) the projection does not preserve area. The transverse Mercator
projection has the properties: (a) there are singular points on the equator, (b) the scale
is isotropic (so the map is orthomorphic) with magnitude varying witith latitude and
longitude, being true on at most tvenirvedlines which cannot be identified with parallels
or meridians, (c) the projection is conformal, (d) the projection does not preserve area.

Scale factors and representation factors (RF)

The OSGB produces many series of maps of Great Britain. For example there are over
two hundred ‘Landranger’ map sheets with each 88&@cm sheet covering an area of
40kmx40km on the ground. This could be taken as implying that the scale of these maps
is exactly 2cm to 1km or 1:50000. However, as we pointed out in the last section, this can
only be an approximate statement since it is impossible to construct a two-dimensional map
of any region of the Earth at a uniform scale. Thus 1:50000 is only a ‘nominal’ scale for
these map sheets, although admittedly the scale variation over any sheet is very small.

Scale variation over map projections is an important topic in the forthcoming chapters.
Now it would be clumsy to discuss such variation around a nominal factor of say 1:50000.
To this end the projection formulag¢, \) andy(¢, A) giving the plane Cartesian coor-
dinates will be defined in such a way that the scale will be close to 1:1 where possible.
Clearly this means that the projection formulae define a very large hypoth&ijpat-map.

(My terminology.) For example, the formulae for a normal Mercator projection of the globe
generate a mapping coordinatevhich will range over an interval of about 24900 miles to



1.6 Chapter 1. Introduction

give a scale factor of unity on the equator (and increasing@g with latitude). Or again,

for a projection of Britain, the super-map would be 600km by 1200km and, if we demand
that the scale be unity on the central meridian &V2we shall find that the scale factor
nowhere exceeds 1.001.

Once we have our mathematical super-map embodying a varying scale (but close to
unity) we can construct thectualmaps for printing by a uniform scaling of the projection
coordinates by a constargpresentation factor (RF), constant that is for a given series of
maps. For example the OSGB uses 1:25000, 1:50000, 1:625000 and other values. Thus
the RF only arises at the printing stage and we can forget all about it and work with the
mathematical super-map for the theoretical analysis of the projections.

Finally, note the usage that a printed map is ‘large scale’ when the RF, considered as
a mathematical fraction, is ‘large’ and the map covers a small area. The OSGB 1:50000
maps are considered to be in this category and the 1:5000 series are of even larger scale.
Conversely small scale maps having a small RF, say 1:1000000 (or simply 1:1M), are used
to cover greater regions.

Graticules, grids, azimuths and bearings

The set of meridians and parallels on the reference ellipsoid is callegtdlieule. There

is no obligation to show the projection of the graticule on the map but it is usually shown
on small scale maps covering large areas and it is usually omitted on large scale maps
of small areas. For the OSGB Landranger 1:50000 series there is no graticule but small
crosses indicate the intersections of the graticulé imt&rvals on the sheet and latitude and
longitude values are indicated at the edges.

The projected map is constructed in a plane Cartesian system but once again there is no
obligation to show aeference grid of lines of constant: andy values. In general small
scale maps are not embellished with a grid whereas large scale maps usually do have such
a reference grid. The OSGB sheets have a grid at a 2cm intervals on the 1:50000 series so
they correspond to a nominal (but not exact) spacing of 1km. Noteathakind of grid
may be superimposed on a map to meet a user’s requirements: it need not be aligned to the
Cartesian projection axes.

On the graticule the angle between the meridian at any pbiand another short line
elementAB is called theazimuth of that line element. Our convention is that azimuths are
measured clockwise from north but other conventions exist. For example, in the past, and
occasionally in the present, azimuth has been measured clockwise from south.

On a projection endowed with a grid the angle between the grid line through the pro-
jected position ofA and the projection of the linel B is called thegrid bearing. The
normal Mercator projections is designed to ensure that the azimuth and grid bearing are
equal (if the grid is aligned to the meridians). On the transverse Mercator projections this
is not so: the azimuth differs from the grid bearing by a small amount which is termed the
grid convergence The difference is tiny but nonetheless it exists: the OSGB 1:50000 map
sheets state the value of the grid convergence at each corner of the sheet.
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Historical note

Let us state at the outset thHaerardus Mercator (1512-1594) did not develop the math-
ematics that we shall present for “his” projection (NMS); moreover he had nothing at all
to do with three other projections that now carry his name—TMS, NME, TME. In 1569 he
published his map-chart entitled “Nova et aucta orbis terrae descriptio ad usum navigantium
ementate accommadata” which may be translated as “A new and enlarged description of the
Earth with corrections for use in navigation”. His full explanation is given on the map-chart:

In this mapping of the world we have [desired] to spread out the surface of the globe
into a plane that the places should everywhere be properly located, not only with re-
spect to their true direction and distance from one another, but also in accordance with
their true longitude and latitude; and further, that the shape of the lands, as they appear
on the globe, shall be preserved as far as possible. For this there was needed a new
arrangement and placing of the meridians, so that they shall become parallels, for the
maps produced hereto by geographers are, on account of the curving and bending of
the meridians, unsuitable for navigation. Taking all this into consideration, we have
somewhat increased the degrees of latitude toward each pole, in proportion to the in-
crease of the parallels beyond the ratio they really have to the equator. (Translation
from Fite and Freeman—see bibliography).

This is an admirably clear statement and the last two sentences make clear his approach. In
order that the meridians should be perpendicular to the equator, and parallel to each other,
it is first necessary to increase the map length of a parallel as one moves away from the
equator. Now at latitude the circumference of a parallel &ra cos ¢ and this must be
scaled up by a factor akc ¢ so that the parallel and the equator have the same map length
(27wa). Thus to preserve the shape of say a small rectangle at some latitude, projected from
ground to map, it is necessary to increase the meridian at#hat latitudeby a factor of

sec ¢. Exactly how Mercator produced his map is not known. He had had a good mathe-
matical education but in 1559 he would not have had access to tables of the secant function
to aid him. Sgperhapshe simply drew rhumb lines on the globe from various points on the
equator, and at various azimuths, and took note of which locations on the globe lay on these
rhumb lines. He could then adjust the ordinate scale of his projection so that all the loca-
tions on any rhumb line on the globe lay ostaaightline on the projection. Alternatively,

it has been suggested that he modified the parallels at ten degree intervals so that projected
rhumb lines were approximately straight for each ten degree interval. Whatever method he
used it is clear that he had grasped what was required, but his projection may have lacked
high accuracy.

Mercator’'s prime aim was to construct a useful navigator’s chart but note that in the
above statement he was also concerned that shapes “shall be preserved as far as possible”;
he understood the desirability of an orthomorphic projection. He would have noticed the
distortion at high latitudes but he was probably satisfied that the appearance at temperate
latitudes (Europe) was really quite good. He may have regretted the distortions to landmass
shapes but this was far outweighed by the utility of his projection for navigators.
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Mercator was extremely secretive about how he had produced his map-chart but this
only stimulated others to research their construction. The first to succeed, and publish (albeit
unwillingly), was a Cambridge professor of mathematics naBehaard Wright (1558?—
1615). Interestingly his 1599 publication is entitled ‘The correction of certain errors in
navigation’. He refers to certain errors in Mercator’s chart and explains how they could be
corrected by using atable of secants. More precisely he realized that if the parallel at latitude
¢ has to move up by a factor proportionalda: ¢ then the net displacement of a parallel
from the equator would be given by summing all of the secants from the equator to the
parallel in question. In modern parlance this requires an integration of the secant function
(see equation 2.28). Of course Wright (like Mercator) was working in pre-calculus and pre-
logarithm days and integration of the secant function would not have been possible. Instead,
he presented his results in numerical tables of ‘cumulative secants’ or ‘meridional parts’
derived by summation from secant tables evaluated at intervals of 1 minute of arc. In other
words he carried out a numerical integration with a very fine sub-division.. It is possible that
the errors he claims in Mercator’s chart were attributable to the fact that Mercator's method
was equivalent to a much coarser approximation to the integration. Wright's tables certainly
allowed the construction of @ery accurate chart based on a latitude and longitude values
taken from a rather fine globe modelled by his compatriot Emery Molyneux. For many
years thereafter the charts were widely described as Wright-Molyneux map projections but
the name of Mercator later became the standard appellation.

Wright gives a nice physical construction of the Mercator projection from a sphere.

Suppose a sphericall superficies with meridians, parallels, rumbes, and the whole hy-
drographical description drawne thereupon, to be inscribed into a concave cylinder,
their axes agreeing in one. Let this sphericall superficies swel like a bladder, (while
it is in blowing) equally always in every part thereof (that is, as much in longitude as
in latitude) till it apply, and join itself (round about and all alongst, also towards ei-
ther pole) unto the concave superficies of the cylinder; each parallel on this sphericall
superficies increasing successively from the equinoctial [equator] towards either pole,
until it come to be of equal diameter with the cylinder, and consequently the meridians
still wideening themselves, til they become so far distant every where each from other
as they are at the equinoctial. Thus it may most easily be understood, how a sphericall
superficies may (by extension) be made cylindrical, ...

It is easy to see that it works. Mercator’s projection is constructed to preserve angles by
stretching meridians to compensate exactly for the streching of the parallels. The angle pre-
serving projection is conformal. Now consider Wright’s bladder: that it must be infinitely
extensible and able to withstand infinite pressure goes without saying. The crucial phrase
is “swel ...equally always in every part thereof”. Therefore the tensions over both the ini-
tial spherical surface and the final cylindrical surface are uniform, albeit of very different
magnitudes. This uniformity guarantees that a crossing of two lines on the sphere will be at
at exactly the same angle on the cylinder. Thus we have generated a conformal projection
from the sphere to the cylinder. And there is only one such conformal projection.

The logarithm function was invented INapier in 1614 and numerical tables of many
logarithmic functions were soon readily available (although analytic Taylor expansions of
functions had to wait another hundred years). In the 1640s, another English mathematician
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calledHenry Bond (1600-1678) stumbled on the numerical agreement between Wright’s
tables and those fdn[tan(#)], as long a® was identified with(¢/2 + 7 /4). The mathe-
matical proof of the equivalence immediately became noted as an important problem but it
was nearly thirty years before it was solvedlaymes Gregory(1638—-1675)lsaac Barrow
(1630-1677) andtdmond Halley (1656—-1742) acting independently. These proofs even-
tually coalesced into direct integration of the secant function as presented in Chapter 2. The
modification of this integration for the ellipsoid (and NME) would be trivial. (But when?

By whom?)

Having given credit to Wright, Bond and others we must now remark that the first
to succeed, but not to publish, was almost certainly an English mathematician (and much
else besides) callefihomas Harriot (1560-1621). He left a large collection of unpub-
lished manuscripts and many years late it became obvious that he had probably duplicated
Wright's calculation of meridional parts and moreover appears to have the link to the loga-
rithmic tangent.

The transverse Mercator projection on the sphere was included in a set of seven new
projections published in 1772 by a continental (born in Alsace-Lorraine) mathematician and
cartographerJohann Lambert (1728-1777). As we shall see in Chapter 3, the derivation
of this projection is a straightforward application of spherical trigonometry starting from
the normal Mercator result. Apparently Lambert even made some oblique references to the
transverse projection on the ellipsoid but it was Carl Friedrich Gauss (1777-1855) who first
constructed a conformal projection from the ellipsoid which preserves true scale on one
meridian, the projection we shall term TME. (This was in connection with the survey of
Hanover commenced in 1818).

Gauss’s method involved a double projection, from ellipsoid to sphere and then sphere
to plane. The modification of his work to construct a single equivalent projection was devel-
oped only as late as 1912 hyKr ger. For this reason the transverse Mercator projection
on the ellipsoid is often called the Gausstler projection. This is the method we shall
examine.

The transverse Mercator projection was not much used until the middle of the twentieth
century when it was advocated for both the new British maps and the proposed world wide
system (UTM). In Britain the need for more precise series for the TME projections was
met by the papers dl Hotine, L P Lee andJ C B Redfearn (see bibliography). The
last mentioned produced the most complete form and the solution is often referred to as the
Redfearn series. We shall derive these series in full detail.

Outline of following chapters

Chapter 2 starts by describing what we mean by an infinitesimal element on the sphere
and goes on to use the planar geometry of such an element (a) to calculate the metric giving
the distance between infinitesimally close points, and (b) to define precisely the azimuth
angle. We then consider the class of all ‘normal’ cylindrical projections onto a cylinder
tangential to the equator of a sphere and compare and contrast three important examples.
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The Mercator projection on the sphere (NMS) is defined as the single member of the class
which is such that an azimuth on the sphere and its corresponding grid bearing on the map
are equal. This property of conformality is then used to derive the projection formulae. The
scale is true only on the equator for basic NMS but we show how it may be modified to give
true scale on two parallels instead.

Chapter 3 discusses the transverse Mercator projection on the sphere (TMS). In this case
we are considering a projection onto a cylinder which is tangential to the sphere on a pair
of meridians which together form a great circle, such &&£%hd 90W. These projections

are rather unusual when applied to the whole globe but in practice we intend to apply them
to a narrow strip on either side of the meridian of tangency which is then termed the central
meridian of the transverse projection. The crux is that by considering a large number of
such projection strips we can cover the whole sphere (except near the poles) with good ac-
curacy. The derivation of the projection formulae is a straightforward exercise in spherical
trigonometry. An important new feature is that corresponding azimuths and grid bearings
are not equal (even though the transformation remains conformal) and we define their dif-
ference as the grid convergence. Finally we present low order series expansions for the
projection formulae.

Chapter 4 is the crunch. Our ultimate aim is to derive the projection equations for the
transverse Mercator projection on the ellipsoid (TME) in the form of series expansions.
The only satisfactory way of obtaining these results is by using a small amount of complex
variable theory. This method is complicated by both the geometrical problems of the ellip-
soid and also by the fact that we need to carry the series to many terms in order to achieve the
required accuracy. Thus, for purely pedagogical reasons, in this chapter we use the complex
variable methods to derive the low order series solutions for TMS (derived in Chapter 3)
from the standard solution for NMS. That it works is encouragement for proceeding with
the major problem of constructing the TME projections from NME.

Chapter 5 derives the properties of the ellipse and ellipsoid that are required in later chap-
ters. In particular we introduce (a) the principal curvatures in the meridian plane and its
principal normal plane, (b) the distinction between geocentric, geodetic and reduced lati-
tudes, (c) the distance metric on the ellipsoid and (d) the series expansion which gives the
distance along the meridian as a function of latitude.

Chapter 6 derives the normal Mercator projection (NME) on the ellipsoid. The method

is a simple generalization of the methods used in Chapter 2 the only difference being in
the different form of the infinitesimal distance element on the ellipsoid. The results for
the projection equations are obtained in non-trivial closed forms. The inversion of these
formulae is not possible in closed form and we must revert to Taylor series expansions.
This chapter also contains a digression on ‘double’ projections and includes a discussion
of the transformation of the ellipsoid to the sphere by means of the conformal latitude.
(The word ‘double’ signifying that a second transformation from the sphere to the plane
is required to produce a map). As a corollary, the conformal latitude is used to provide a
second means of inverting the NME projection formulae.

Chapter 7 uses the technigues developed in Chapter 4 to derive the transverse Mercator
projection on the ellipsoid (TME) from that of NME. This derivation requires distinctly
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heavy algebraic manipulation to achieve our main result, the Redfearn formulae for TME.

Chapter 8 returns to the definitions of point-scale factor and grid convergence presented
in Chapter 3 (for TMS) and derives the corresponding results for TME as series expansions.
Once again the algebra is fairly heavy.

Chapter 9 applies the general results of Chapters 7 and 8 for the TME projections to two
important cases, namely the Universal Transverse Mercator (UTM) and the National Grid
of Great Britain (NGGB). The former is actually a set of 60 TME projections each covering

6 degrees of longitude between the latitudes ¢f8@nd 84N and the latter is a single
projection over approximately 10 degrees of longitude centred°@ &nd covering the
latitudes between 50 and 60N. We then discuss the variation of scale and grid conver-
gence over the regions of the projection and also assess the accuracy of the TME formulae
by examining the terms of the series one by one. We find that for practical purposes some
terms may be dropped, as indeed they are in both the UTM and NGGB formulae. Finally
the projection formulae are rewritten in the completely different notation used in the OSGB
published formulae (see bibliography).

Finally, this work is continuing and two further chapters are intended:

Chapter 10 will cover the derivation of the oblique Mercator projections.

Chapter 11 will not be concerned with projections. It will discuss geodesics on the sphere
and ellipsoid and the problem involved in calculating arbitrary distances accurately. In
particular we will give the derivation of the Vincenty formulae for long geodesics on the
ellipsoid.

This article has tried to be as self-contained as possible and to this end there are seven
mathematical appendices. Many of these were developed for other uses so they are more
general in nature.

Curvature in two and three dimensions.
Inversion of series by Lagrange expansions.
Plane Trigonometry.

Spherical Trigonometry.

Series expansions.

Calculus of variations.

@ mmooO wm >

Complex variable theory.
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Chapter

Normal Mercatoronthesphere: NMS

Geographical coordinates and Cartesian coordinates. Infinitesimal elements
and the metric. General normal cylindrical projection. Angle transformations
and scale factors. Three examples of normal cylindrical projections. Derivation
of the Mercator projection. The loxodrome or rhumb line. Modified normal

cylindrical projections.

2.1 Coordinates and distance on the sphere

Coordinates

The position of a poinf on the sphere is de-
noted by an ordered paip, \) of latitude, longi-
tude values; the meridiana ¢€onstant), the equa-
tor (¢ = 0) and the small circlesyconstant, non-
zero) constitute thgraticule on the sphere. The
figure shows a second poift with coordinates
(¢ + dp, XA + 6)), the meridians through’ and
Q, arcs of parallels? M, K@ and the geodesic
(great circle) through the point8 and@. Such
geographical coordinates will be given in degrees
but in equationsaLL angles will be in radians.
The unitmil, such that 6400mil=2 radians=360
is sometimes used for small angles, in particular
the grid convergence defined in Chapter 3.

The following should be noted:

Figure 2.1

lrad = 57°.29578 = 57°17'44".8 = 3437'.75 = 206264”.8 = 1018.6mil

1° =0.0174533 rad

1mil = 0.9812mrad= 0°.0049 = 0'.297 = 20" .2.

1" = 0.000291 rad = 3.37 mil,

1”7 = 0.00000485 rad  (2.1)
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If the distance ofP from the axis {.e. the radius of a parallel circle) is denoted b)), so
thatp(¢) = a cos ¢ then the Cartesian coordinates are

X =p(¢)cos\ = acosep cos A,
Y =p(p)sin A =acos¢ sin A,
Z =asing¢, (2.2)

with inverse relations

¢ = arctan (i) = arctan <\/)%> , A = arctan <§> . (2.3)

For a point at a heightt above the surface @ we simply replace: by a + h in the direct
transformations: the inverse relations fipand A are unchanged but they are supplemented
with the equation

h=vVX2+Y24+ 22 —a. (2.4)

In this chapter we consider a sphere with radius equal to the semi-major axis of the Airy
ellipsoid:

a = 6377563.396m ~ 6378km ~ 3963 miles.

This approximation value will suffice for the moment but more precise results will be needed
when we come to consider the large scale maps of TME. For the above radius the circum-
ference of the equator (or any great circle) is approximately 40071km (24900 miles) and
the distance between pole and equator is one quarter of that value, 10018km (6225 miles).
The closeness of the latter valueli® m reflects the original French definition of the metre
as10~7 times the pole—equator distance.

Distances on the sphere

In Figure 2.1 the distancB(Q in threedimensions is unique but the distaraethe surface

of the sphere depends on the path taken between the points. For example, if the points are
at the same latitude we can calculate the distance between them by measuring (a) along
the parallel circle, (b) along the rhumb line (or loxodrome) which, by definition, intersects
meridians at constant azimuth, or (c) along a geodesic which, by definition, gives the short-
est distance on the surface.

The only trivially calculated distances are those measured along meridians or parallels:
on the meridian in Figure 2.1 we haveK = ad¢ (Wheredo is in radians) and on the
parallel PM = p(¢)dA = acos¢d\. For widely separated points these becoh¥ =
a(pa — ¢1) andPM = acos ¢ (A2 — A1). Itis useful to have some feel for the distances on
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meridians and parallels on the sphere:

1° latitude difference on a meridian = 111.3km = 69.16miles,

1 = 1.855km = 1.153miles~ 1nml,

1” = 31m = 33.8yds

1° longitude difference on parallel 48 = 78.7km = 48.9miles

1 = 1.312km = 0.815miles,

1" = 22m = 23.9yds (2.5)

One minute of arc on the meridian (of a spherical Earth) was the original definition of the
nautical mile (nml). On the ellipsoid this definition of the nautical mile would depend
on latitude and the choice of ellipsoid so, to avoid discrepancies, the nautical mile is now
defined by international treaty as exactly 1852m, corresponding to 1.150779 miles. The
original definition remains a good rule of thumb for approximate calculations.

For two points in general position finding the distance is a non-trivial problem. There
are two important cases to consider: (a) given the geographic coordinates of two points
find the length of the geodesic between them and also the azimuths at the end points of the
geodesic joining them; (b) given a starting point and an initial azimuth find the coordinates
at a specified distance along the geodesic. These are the two principal geodetic problems
and their solution, for both sphere and ellipsoid, is presented in Chapter 11. In the present
chapter we consider only the problem of finding the distance between points on the surface
which are infinitesimally close. This will suffice for the calculation of scale factors.

Infinitesimal elements

In practical terms an element of area on the sphere can be said to be infinitesifoal if,
a given measurement accuragye cannot distinguish deviations from the plane. To be
explicit, consider the spherical elemdnd/ Q) K shown in Figure 2.1, and in enlarged form
in Figure 2.2a, where the solid lindsK, M @, PQ are arcs of great circles, the solid lines

A/“N\
%

B
N

"\%

1

(b) 0
Figure 2.2

PM and K@ are arcs of parallel circles and the dashed lines are straight lines in three
dimensions. From Figure 2.2b, féfrad) < 1 the arc—chord difference is

.0 6 163 ab? 5
arc(AB) — AB = af#—2asin 3= ad—2a (2_3!8+ - > =51 +O0(af’). (2.6)
Suppose the accuracy of measurement is 1m. Settingdop we see that the difference
between the arc and cho@dK will be less than 1m, and hence undetectable, if we take
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§¢ < (24/a)'/3 ~ 0.0155rad, corresponding to 5r a meridian arc length of 99km.
Similarly, settingd = 6\ and replacing: — a cos ¢, the difference between the arc and
chord PM at a latitude of 45 (wherea cos ¢ = a/+/2) is less than 1m if )\ is less than

59, corresponding to an arc length of 78km on the parallel. If we take our limiting accuracy
to be 1mm the above values become 9.9km and 7.8km. A surface element of this order or
smaller can therefore be well approximated by a planar element.

@ X/ \Q ® K Qo150

s 8.6(])
0

P a(cosd)oA M
A A+OA

Figure 2.3

We shall now prove that the small surface elemBhafQ M may be well approximated
by arectangularelement. Figure 2.3a shows the planar trapezium which approximates the
surface element. Sind@M = a cos ¢ § A we have

KQ—PM =6¢ ;qu (acospdN) = —asinp oA do. 2.7
Now the distancéd’ K = ad¢ so the small angleis given by
PM - K 1 1
€~ sine = 5 QPK :isin(bé/\. (2.8)

Clearly e becomes arbitrarily small &8 approaches® and the infinitesimal element
is arbitrarily close to the rectangle with sideé¢ anda cos ¢ éA shown in Figure 2.3b.
The planar geometry of the right angled triangl€@ M gives two important results for the
azimuth « and distance:

acos ¢ dA dA

= 1 = 2.
tan o Qlinp 230 cos ¢ i’ (2.9)
05> = PQ? = a® 60> + a® cos®p 62, (2.10)
The latter follows more directly from equations (2.2):
dX = —(asin ¢ cos \)d¢p — (acos ¢ sin \)dA
dY = —(asin ¢ sin \)d¢ + (acos ¢ cos \)dA
dZ = (acos¢)do, (2.11)

ds* = dX?*+dY? +dz?,

ds* = a®de? + a® cos®p d)>. (2.12)
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2.2 Normal cylindrical projections

The normal cylindrical projections of a sphere of raditege defined on a cylinder of radius

a which is tangential to the sphere on the equator as shown in Figure (2.4). The axis of the
cylinder coincides with the polar diametdfrS and the planes through this axis intersect
the sphere in its meridians and intersect the cylinder in its generators. The projection

= ) y=af(0)

1 o o
N 180°W 180°E
T T T T T T T T T T
| | | | | | | | | |
A T T B TS N T S N
| s | I I I ! I I ! ' P(x,y) !
R I K AN I I I I I le I
S P@QMA S R R R AR T B A
9 Jommmmmmaal L ¥ | | |
- -Ik { ¢ T trhe scz‘ale on}equator } 0) } I } } I X
SESEAD T T
P R R ’ AN T S S SR SO N
_O E 77777 r r r } 77777 N r } 77777 r L } 77777
SIS O I SO0 U OO U OO O O O O WO A
| | | | | | | | | |
------------ ! ! ! | ! ! | ! ! |
. a | | | | | | | | | |
~ s X=—Tta Greenwich X=ma
meridian

Figure 2.4: The normal cylindrical projection
takes the points of each meridian to points on the corresponding generator of the cylinder
according to some formula which is NOT usually a geometric construction—in particular
the Mercator projection is not generated by a literal projection from the centre (as stated in
some elementary texts). The cylinder is then cut along a generator which has been taken as
A = 180° in Figure 2.4 but could have been chosen as any longitude. Finally the cylinder
is unrolled to form a flat map, the super-map which we discussed in Chapter 1. Note that
the last step of unrolling introduces no further distortions. Axes on the map are chosen with
the z-axis along the equator and theaxis coincident with one particular generator, taken
as the Greenwich meridian (= 0) in Figure (2.4). Clearly the meridians on the sphere
map into lines of constant on the projection so the-equation of the projection is simply
x = a (radians) with this choice of coordinate system. Forgezgjuation of the projection
we admitany (sensible) function o, irrespective of whether or not there is a geometrical
interpretation. Thus normal cylindrical projections are defined by

(A, @) = al, (2.13)
y(A @) =a f(9), (2.14)

where) and¢ are in radians. With transformations of this form we see that the parallels on
the sphered constant) project into lines of constanto that the orthogonal intersections

of meridians and parallels of the graticule on the sphere are transformed into orthogonal
intersections on the map; we shall see that thiminecessarily true for intersections at an
arbitrary angle. The spacing of the meridians on the projection is uniform but the spacing
of the parallels depends on the choice of the funcfitn).

YIn referring to geographic positions it is conventional to use latitude—longitude orderingPd®jn) but
for mathematical functions of these coordinates it is more natural to use the reverse ordefXagin
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Note thatall normal cylindrical projections have singular points sinceghits NV, S
at the poles transform intmesgiven byy = a f(£7/2). On the sphere meridians intersect
at the poles but on cylindrical projections meridians do not intersect. All other points of the
sphere are non-singular points. Of course there is nothing special about the poles; if we use
oblique or transverse projections the geographic poles are regular points and other points
become singular—the singularities at the poles are artifacts of the coordinate transforma-
tions. For example we shall find that the transverse Mercator projection has singular points
on the equator.

The equations (2.13, 2.14) define a projection to a super map of constant width equal to
the length of the equata2yra or 40071km. Since the true length of a paralletis: cos ¢,
the scale (map length divided by true length) along a parallel is equat to, increasing
from 1 on the equator to infinity at the poles. Note that this statement about scale on a par-
allel applies taanynormal cylindrical projection but the scale on the meridians, and at other
azimuths, will depend orf(¢). The actual printed projection in Figure 2.4 is about 8cm
wide on paper so the RF (representative factor) is 8cm/40071km which is approximately 1
to 500 million or 1:500M.

Angle transformations on normal cylindrical projections

In Figure 2.5 we compare the rectangular infinitesimal elenvit) K on the sphere with
the corresponding eleme® M’(Q)’ K’ on the projection. The latter is also a rectangle but
without any approximation since the meridians map into lines of constand the parallels
map into lines of constant The anglek”’ P’'Q)’ is called thegrid bearing 3 corresponding

(a) K |sphere Q 0450 (b) K'[projection |Q' 548y
5 '
g ado ds Sy
P| a(cos9)oA |M ¢ P 5x ik
A A+OA X X+0X

Figure 2.5

to the azimuthw on the globe. The geometry of these rectangular elements gives

_acospoior B (Lx oA
(@ tana= “add and (b) tanpg = 5y = F(0)00 (2.15)
so that
tan 3 = JSC?(Cgﬁq; tan a. (2.16)

Note thata=( on the meridians (both zero) or on the parallels (botB) but in general
a # (B unlessf’(¢) = sec¢. Therefore this is the condition for a normal cylindrical
projection to be conformal. It also provides the means of calculatiag for Mercator
projection.
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Definition of the point scale factor
If we setP’@Q’ = ds’ then for the element on the projection we have

65 = 6x° + 6y (2.17)

We now defingu, the point scalat P’ by

— lim distanceP’Q’ on projection - s’ (2.18)
H= %P distancePQ on sphere  @—P ds’ '
or, in terms of the distances squared, (using (2.10))
12 2 2
p? = lim 0s i 02" + 0y (2.19)

SN :
QP 552 Oop a2 0% + a? cos2¢ G2

Point scale factors on meridians (h) and parallels (k)

When PQ lies along the meridianA andox are zero and = a f(¢). The scale factor
in this case is conventionally denoted byTherefore (2.19) gives

meridian: h = f(¢). (2.20)

Similarly, whenPQ lies along a parallel of latitudéy anddy are zero and: = a\. The
scale factor in this case is conventionally denoted byherefore

parallel: k = sec ¢. (2.21)

Point scale factor in a general direction

Equations (2.15) givé¢= cot o cos ¢ A anddy= cot G dz. Therefore equation (2.19)
gives the scale factor at azimuthas

622(1 + cot?p)

2 — 2.22
o= 00 a2 cos2¢ dA2(1 + cot?a)’ (2.22)
which reduces to
S1n <«
Na(ﬁb) = SeCd) [sinﬂ] s (223)

where we assume thathas been found in terms efand¢ from equation (2.16).
Area scale factor

The area scale is obtained by simply comparing the areas of the two rect&igigd<
andP’'M’'Q’'K’. Denoting this scale factor hy, and using equations (2.20) and (2.21).

_ ox oy
HA= 3 (acos ¢ oA) (a 00)

= sec ¢ f'(¢) = hk. (2.24)

NB. All of these scale factors apply only to the normal cylindrical projections. They are
independent o\, a reflection of the rotational symmetry.



2.8 Chapter 2. Normal Mercatoronthe sphere: NMS

2.3 Three examples of normal cylindrical projections
We shall compare three simple projections of the sphere:

1. The equidistant (Ptolemy, Bonne or Plate @ajrprojection;f(¢) = ¢.
2. Lambert’s equal area (sinusoidal) projectigit®) = sin ¢.
3. Mercator’s projection;f(¢) = In [tan(¢/2 + w/4)]. (Derived in Section 2.4).

equidistant equal-area Mercator
x transformation T =a\ T =aA T =a\
z-range (—7a, 7a) (—ma, wa) (—ma, 7a)
y transformation ag asin ¢ aln[tan(¢/2+7/4)]
y-range (—ma/2, ma/2) (—a, a) (—00, 00)
f(9) ¢ sin ¢ Inftan(¢/2 + 7/4)]
1) 1 cos ¢ sec ¢
meridian scalek) 1 cos ¢ sec ¢
parallel scalek) sec ¢ sec ¢ sec ¢
scale on equator 1 1 1
area scalelk) sec ¢ 1 sec? ¢
angles (eq. (2.16)| tan f=secptana | tan B=sec? ¢ tan o tan § = tan «
aspect ratio 2 T 0

Figure 2.6 Figure 2.7 Figure 2.8

Table 2.1

The three projections are shown in Figures (2.6—2.8) with every little ‘smudge’ on the
maps indicating a small island or small lake! The maps all have the saraage of
(—ma, wa) (in metres) but varying-ranges. They all have unit scale on the equator and the
RF on these pages is 12cm/40000km or about 1/300M.

On the equatorh = 0 so that (a) all the point scale&,(k, and i) are unity so
that the scale is isotropic and small elements retain their shape, (b) the area scale is unity
and (c) equation (2.16) shows that= (3 so that all lines cross the equator on globe and
projection at the same angle. Thus on the equator the projections are perfectly behaved and
suitable for theaccuratemapping of countries lying close to the equator.

Away from the equator the divergent parallel scate: ¢p — oo as¢ — m/2) produces
gross east-west stretching in high latitudes but the differing meridian stretching leads to
different shapes and areas. The acid test is to compare the projection with the outlines
shown on any toy or classroom globe. In particular look at the shape of Alaska and the area
of Greenland. The latter should be 1/8 that of South America and 1/13 that of Africa.

Finally, each of the projections is annotated on the right with a chequered column cor-
responding t&° x 5° regions on the sphere. The width of these rectangles is the same on all
but their height depends of(¢).
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The equidistant projection: f(¢) = ¢

This projection, whose only merit is the simplicity of construction, has been in use as
far back as the time of Ptolemy (83?7—161AD): the meridians and parallels of latitude are
equidistant parallel lines intersecting at right angles, forming a square grid on the map—the
‘Plate Carée’. Except on the meridiana (= § = 0) and parallels¢ = g = 7/2) the map

is not conformal & # (3), the scale is not isotropic and the area scale factor is not unity.
High latitudes are distorted as expected. The aspect ratio (width:height) is 2.

The very terminology ‘equidistant’ is misleading, for the scale is true only on the
meridians and on the equator. On these lines finite ruler distances measured on the page
give accurate true distances simply by dividing by the RF, however separated be the two
end points. However the scale is not unity anywhere else. On the parallels it is given
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Figure 2.6: The equidistant projection

by k = sec ¢ and the ruler distance must be divided by this factor and the RF to obtain
true distances. On a straight line on the projection with a constant bearfngt equal

to zero orr/2), equation (2.23) shows that the scalgus = sec ¢ sin a(¢) cosec 3 with

a(¢) = arctan(tan 3 cos ¢) obtained from (2.16). Theé dependence of this scale factor
means that there is no simple way of measuring along such a line with a ruler in order to
determine any kind of distance. A numerical integration of the scale factor along the line
on the projection is possible but it would give a distance on that line on the globe which
corresponds t@ constant; in general such a line is not a parallel, meridian, rhumb line or
great circle geodesic, so the utility of such an integration must be queried. The only simple
way to obtain the geodesic distance between general points on the projection is to transfer
their coordinates to the sphere and then use the standard geodesic formulae presented in
Chapter 11.
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Lambert’s equal area projection: f(¢) = sin ¢

This projection, which was first presented by Lambert in 1772, has many properties in
common with the equidistant projection: it is well behaved at the equator, it is distorted at
high latitudes and the scale is unity on the equator only. Its great plus is that it preserves
the magnitude of small and large areas since the scale factor on the meridians$ ¢)
compensates exactly for the stretching on the parallets gec ¢). The scale factor on the
meridians is a compression as compared to the equidistant projection so that the parallels
bunch up at high latitudes—witness the box scale on the right hand side. The projection
satisfies the Greenland test but still fails the Alaska test.

Once again reading distances from the map is trivial on the equator and parallels (where
we must divide by a factor ofec ¢). On meridians it is also simple for, if we know two
y-values,y; andys, not just their separation, we can use- arcsin(y/a) to find the corre-
sponding latitudes and hence the arc lengi$, — ¢1). On general lines of the projection
we havetan 3 = sec?¢ tan o for which we have the same problems as in the previous case.

The projection is neither conformal nor isotropic but on the other hand it is one of the
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Figure 2.7: Lambert’s equal area projection

few which admits of a geometric interpretation becayse a sin ¢ is simply the distance

of a point at latitude) above the equatorial plane. Thus points are projected from the sphere
to cylinder by lines parallel to the equatorial plane drawn from the axis of the sphere—not
projected from the origin. Thus any narrow (in longitude) strip of the map is basically the
view of an actual globe from an appropriate distant side position.

The projection is not often used in the form given here: itis usually compressed laterally
and extended vertically whilst preserving the equal area propegtythe transformations
becomexr = Ka) andy = K lasin¢ so that we still havéhk = 1 but the scale on
a parallel is nowK sec ¢ and the meridian scale &' cos ¢. This means that the true
scale is attained only on some parallel other than the equator. For example the equal area
projection of Gall (1855), which was republished by Peters in 1973, I$ets 1/1/2 so
that the meridian and parallel scales are unity at latitudeis46f. The distortion of shape
in the Peters projection is well known.
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Figure 2.8: The Mercator projection

Mercator’s projection: f(¢) = In[tan(¢/2 + 7 /4)]

Figure 2.8 shows Mercator’s projection of 1569. Both scale factors, on meridian and par-
allel, increase asec ¢ so that in addition to the stretching along the parallels the meridians
are stretched to infinity and the aspect ratio becomes zero. In the above figure we have cho-
sen to truncate the projection at the vajue- +3.13a corresponding t@ = +85° so that

the aspect ratio is very close to 1. Truncation at these high latitudes emphasizes the great
distortion near the poles—witness the diverging area of Antarctica and a Greenland as big
as Africa.

The fundamental property of the Mercator projection is that it is confornealt is an
angle preserving projection; this follows from equation (2.16) sifi¢¢) = sec ¢ implies
thata = 3, i.e.a curving rhumb line of constant on the globe projects into a straight line
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of constant bearing on the map and vice-versa. For more on rhumb lines see Section 2.5.

The isotropy of scale implies that the shapespfall elements is well rendered on the
projection; the property of orthomorphism. Consider a small square oflsatdatitude¢
where the isotropic scale factordsc ¢. The projection will map this square into an exact
square of sidd. sec ¢, preserving its shape, only if the variationset ¢ over the square can
be neglectedt the precision of measurement in ukarger shapes will be distortedsic ¢
varies appreciably over their size making the Mercator projection unsuitable for detailed
mapping of large countries.

The only true scale on the Mercator projection is attained at the equator and moreover
the area scale approaches unity too. Thus, since we still have conformality, it may well
be convenient to use Mercator for accurate large scale mapping near the equator. This is
discussed more guantitatively in the next section. Meanwhile we must accept the limitations
of using Mercator for small scale maps of the globe—charts excepted!

Using ruler distance to deduce true distance is non-trivial away from the equator. On
parallels we can again divide the ruler distance:by sec ¢ to find the true distance on the
parallel (which is not a geodesic difference). On a meridian where the scaledisdéc ¢)
we have to invery = f(¢) to find latitudes and hence an arc length: this is discussed in
the next section. On lines of constant bearihthe scale factor is als@c ¢. This can be
integrated but it gives a distance along a rhumb line—see Section 2.5

Conformal versus orthomorphic

The definition of ‘conformal’ just given is that the projection preserves the angle be-
tween any two lines through any (non-singular) point of the map. This is an exact statement
referring to the behaviour of the transformaticatsa point Many authors use the word
‘orthomorphic’ (right-shape) as a synonym for conformal but it is important to realise that
orthomorphism can only be satisfied approximately in a conformal projection because it is
a non-local property. No projection can be completely orthomorphic since ewnai
shapes are preserved then one can find large shapes which are distorted. For this reason we
prefer to use the word conformal (exact) rather than orthomorphic (approximate).

2.4 The normal Mercator projection

Derivation of the Mercator projection

The normal Mercator projection is defined to be that normal cylindrical projection which is
conformal, so that the azimuth and grid bearing are equat, 3. Equation (2.16) shows
that this is possible only if

df

(o) = i sec ¢, (2.25)

and therefore

ol
f(9) = /0 sec ¢ d, (2.26)

with a lower limit such thay(0) = af(0) = 0.
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Now
cos ¢ = sin (¢ + 7/2)
= 2sin (¢/24m/4) cos (¢/2+m/4)
= 2tan (¢/2+7/4) cos? (/247 /4)
so that

y=af(6)=5 /f S;Cj((j//;i://j)) dé = aln {tan ( )} 2.27)

There is no need for modulus signs inside the logarithm. Foy2 < ¢ < =7/2 the

argument of the tangent is in the intery@l /2], therefore the argument of the logarithm
is in the rangd0, o) and the logarithm itself varies fromoo to cc.

Mercator parameter and isometric latitude

The function of¢ which occurs in the expression for thecoordinate in the Mercator pro-
jection is of importance in much that follows. We shall call it tMercator parameter and
denote it by (¢) and write the equations of the projection as

x()‘> d)) = a, y(Av ¢) = a¢(¢),
with

_ o W _
P(¢p) =1In [tan <2 + 1 Q> sec ¢. (2.28)
The term Mercator parameter is not standard usage. It is usually callébthetric lati-

tude. For example see Snyder(1987). But beware; other authors use the term for a different,
but related, function. Note, too, that the symbols not universal: Lee(1946a) and Red-
fearn(1948) us#&, Maling(1992) useg and so on.

The origin of the term isometric latitude relates to a re-parameterisation of the sphere
in such a way that the isometric latitude (replacing the geodetic latitude) anelinvolved
with equal weight in the metric formulae such as (2.12). If we wﬁtfer such an isometric
latitude then the metrids? = a2d¢? + a2 cos2¢ dA> becomesls? = a2 cos2p(dy)? + dA?)
if we choosecos ¢>d{5 = d¢. The coefficients in the metric are now both equatteos?4.
Since oury is defined above (2.28) byos ¢ dip = d¢ we see that the functions(¢)
and QZ(QS) must be identical. However the two functions are logically distinct and in an
elementary treatment we prefer to use different names but allow the same symbol

Having urged care with notation we must flag a small problem in notation. When we
define the Mercator projection on the ellipsoid (NME in Chapter 6) we must define the
Mercator parametep in a slightly different way, but such that it reduces to (2.28) as the
eccentricitye tends to zero. It would therefore have been natural to define the Mercator
parameter on the sphere@g. We have nonot done this, assuming that the correct inter-
pretation will be obvious from the context.
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Alternative forms of the Mercator parameter

The Mercator parameter can be cast into many forms which may be useful at times; here
we present five such. Consider the argument of the logarithm in (2.28):

1+ tan(¢/2)  cos(¢/2) + sin(¢/2)

tan(0/2+7/4) = T an(9/2) ~ cos(6/2) — sim(9/2)
B (cos(p/2) + sin(¢/2))2 _ L+sing sec an
= C082(¢/2) - Sln2(¢/2) - COqu - (b +t ¢ (229)
Hence

¥(¢) = In[sec ¢ + tan ¢]. (2.30)

Now rearrange the penultimate term in (2.29):

l+sing  ((1+sng)2"*  (1+sing)
cos ¢ _{ 1—sin2¢} _{lsingb} '

Therefore we have

5 (2.31)

Now exponentiate each side of (2.30):

1, [l+sing
Y(¢) =5 In [1—Sm¢] :

e¥ = sec ¢ + tan ¢.
After a little manipulation we find that

. _ w _ _w _
and therefore 2sinhy =€" —e 2tan ¢,

(@) sinh = tan ¢, (b) coshy = seco, (c) tanhty =sing, (2.32)
from which we obtain three further variants fot¢):
1 = arcsinh(tan ¢) = arccosh(sec ¢) = arctanh(sin ¢). (2.33)

The inverse transformation

The inverse transformation of (2.28) is clearly
=1, v="12 (2.34)
a a
where¢ must be deduced from by using the inverse of any of the four expressions given
in (2.28) and (2.32). For example, from (2.28) and (2.32c) we get
_ -1 (qu/a) _ T

(@) ¢ =2tan (ey ) 5"
Comment: the coordinate origin of the transformation may be chosen as any point on the
equator so that we write = a(A — \g) with a trivial inverse. There is no such freedom of
choice for¢ since its definition is intimately tied to the choice of polar axis and a graticule
which assigns) = 0 on the equator. The range ofis confined to]—= /2, 7/2] and no
translation of thep origin is permitted.

(b) ¢ =sin"![tanh(y/a)]. (2.35)
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2.5 The rhumb line or loxodrome

We have defined thehumb line or loxodrome on the sphere as a curve which intersects
meridians at a constant azimuthand is therefore projected to a straight line on the Merca-
tor projection with constant bearirfysuch thaty = 3. Special cases are (a) the equator and
any parallel on whiclv = g = /2, (b) any meridian, on whichk = 3 = 0. The utility

of a direct link between rhumb lines on the sphere and straight lines on Mercator charts is
obvious; it is discussed in many nautical publications and web-sites.
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Figure 2.9: Rhumb line on the sphere and the Mercator projection

Figure 2.9 shows such a rhumb line crossing the equator°a/2hd maintaining a con-
stant azimuth 083°; it spirals round the sphere from pole to pole whilst, on the projection,

it becomes a repeated straight line of infinite total length because the Mercator projection
extends to infinity along thg-axis. However, it is easy to show that corresponding rhumb

(a) (b)

Figure 2.10:

line on the sphere hdmitelength. In Figure 2.10 we show an enlarged view of correspond-
ing elementsPQ on the sphere an&’Q’ on the projection. The left hand triangle shows
thatcos o = a d¢/ds. Sincea is a constant this integrates directly to give

S12 = asec « (¢2 - (;51), (bl 75 (;52. (236)

for a rhumb line from(¢1, A1) to (P2, A2). Settingp; = —n/2 andgpy = 7/2 we see
that the total length from one pole to anothetisc a(r/2 — (—7/2)) = masec a. This
becomesra on a meridian where it does not spiral. Therefore to calculate the distance along
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a rhumb line we need know only the constant azimuth and the change of latitude. Note that
the above result fails on the equator or any parallel sifnce: ¢-. In this case we have

s;g=acosp(Aa— A1) P =2 = ¢.

Itis very straightforward to plot the rhumb line on chart and on the sphere. On the chart it is
trivial for the equation of a line of gradiendt « through the pointx1, y; ) on the projection
is simply

y—y1 =cota(z —x1). (2.37)

The corresponding equation on the sphere follows immediately by using the Mercator pro-
jection formulae giving

a(h — 1) = acota (A — A1), (2.38)

which, on substitution fot) from (2.28) , becomes

AMo) =M+ tana(ln [tan (% + %)} —1In [tan <% + Z)D (2.39)

To plot the rhumb line on the surface of the sphere we choose a patdl&iq then evaluate
A at the point where the rhumb line crosses the parallel by using the above result.

Mercator sailing

The above equations solve the basic problem of ‘Mercator sailing’. That is, given a starting
point (¢1, A1) and a destinatiorig,, \2) we have to find the azimuth of the rhumb line
and the sailing distance. The azimuth follows from (2.38) as long as we have tables of the
Mercator parameter or a calculator and the formula (2.28). Notice that in using (2.38) the
longitude difference must be expressed in radians by a preliminary calculation. Once we
have the azimuth then the sailing distance follows from (2.36) with the latitude in radians.

Of course, even before the advent of technology, there was no need for these calculation
as long as one was sailirghort legs, no more than a few degrees, and as long as one
possessed a Mercator chart marked up with scales of latitude and longitude against which
we can plot start and final positions. The azimuth is trivial because it equals the bearing
marked on the chart as the line joining start and finish points.

The distance is a little more tricky because the chart scales vary non-linearly, but isotrop-
ically, assec ¢. To find the true distanceés, corresponding tds’ we must first compensate
by dividing the ruler length ofis’ by sec ¢. This will also be the case for finite distances
as long as the variation kec ¢ along the sailing course can be neglected. Now rather than
working outds’/ sec ¢ we can simply measurés’ on a ‘stretched rulei.e. one which has
already been stretched by a factorset »—and there is one on the map already, namely
the latitude scale on the vertical edges of the chart. So all one need do is use dividers to
transferds’ to the latitude scale and if this is marked with minutes then we have our final
results in traditional nautical miles (on a sphere) without further calculation. For longer
voyages, more than a few hundred miles, reading the azimuth from the chart is still trivial
but the distance must be calculated using (2.36) because the latitude scale on the sides is too
non-linear to use as a measure over such distances.
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Meridian parts

Equations (2.36) and (2.38) were the basic equations that navigators could use in the early
seventeenth century once they were furnished with Wright's table of Meridian parts. The
first edition was based on the division of the meridian into 540 ‘parts’ 6firit@rval but

he soon improved this to 5400 parts atriterval. For each part he calculated how much

it would be stretched by the Mercator scale factor and he then added these successively to
obtain his cumulative secants. Nautical texts often write the total of (stretched) Meridian
parts from the equator to a latitugdeas

@
MP(¢) = Y sece;  atintervals of 1 (2.40)
0

Bearing in mind that there are 3437.75 minutes of arc in one radian (Equation 2.1) we see
that the above sum is proportional to a good approximation to the integsat of

¢
MP(¢) ~ 3437.75 / sec ¢ dop = 3437.751(¢)). (2.41)
0

Thus the meridional parts are simply proportional to the ordinate of the Mercator projection.

Now if we also expresé\s — A1) in minutes of arc in equation (2.38) we obtain
(A2 — A1)’

MP(¢2) — MP(¢1)

where the MP values are obtained from Wright's tables. Thus, as long as we know latitude
and longitude values of start and finish, we can work out the required sailing course even if
we lack a chart. The sailing distance then follows immediately from equation (2.36) as

s12 = seca (o — ¢1), (2.43)

where we have absorbed the factoraao that if latitudes are expressed in minutes of arc
the result is in (traditional) nautical miles for a sphere.

(2.42)

tana =

2.6 Scale, distance and accuracy in the Mercator projection

We have already observed that siace- § for the Mercator projection the scale factor from
equation (2.23) is isotropic and equakte ¢. It is customary to usk for the common value
of an isotopic scale factors therefore, in terms of the geographical coordinates, e have

k(A, @) = sec ¢, (2.44)
and in terms of the projection coordinates we use (2.32b) to find

k(x,y) = coshy = cosh(y/a). (2.45)

2Note the order. For all functions of two variables defined on the sphere we prefer towtiie absciisa-
like variable, first. This is unconventional but it makes subsequent chapters more logical.
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Note that we should really distinguish these two scale factors, by using distinct functional
names such as(\, ¢) andl?:(a:, y), because replacingand\ in equation (2.44) by andy

would givek(z,y) = sec x, which is not equation (2.45). This kind of distinction is rarely,

if ever, made in the literature of cartography and we shall not do so here; context will make
things clear.

Away from the equator the scale factorkis= sec¢ > 1 and an infinitesimal ruler
distance on the map will therefore exaggerate distances on the sphere by this amount. It
is only on a parallel, wherg is constant, that we can measure large distances by dividing
the ruler distance by the RF and then dividing agaimdayp. Unlike the other projections
we have considerd, for Mercator we can also easily measure distances on a rhumb line by
using (2.36) but geodesic distances must be measured by the methods of Chapter 11.

Our main concern in this article is to investigate the application of the transverse Mer-
cator projections to large scale accurate mapping so it is interesting to see how the normal
Mercator fares in this respect when we are close to the equator Wherk It is necessary
to define the word ‘accurate’: we shall use it to mean that the scale variation is within 0.04%
of some specified value, corresponding to 4 parts in 10000. We shall call thigmieeof
accuracy.

For normal Mercator the scale varies betwderr= 1 at the equator and 1.0004 as
latitudes+¢, given bysec ¢1 = 1.0004, or cos ¢1 =~ 0.9996, corresponding tg; = 1.62°.
Thus the zone of accuracy for the Mercator projection is a strip of about @&i2ih centred
on the equator—this corresponds to 360km or 200 miles. The projection is certainly suitable
for accurate mapping that narrow band of latitudes; in the next section we shall see how the
projection may be modified to give a wider zone of accuracy.

We could argue that that the absolute value of the scale is not relevant—only the vari-
ation of scale over the mapped region is of interest. Consider, for example, the band of
latitudes starting at0°N, wherek = 1.015: we find that the scale has increasedy4%
when we reach0.12°N so that the width of the zone of accuracy startind@&N is only
7'.7. This is a tiny strip indeed. B30°N we havek = 1.155 and the zone of accuracy is
only 2’.4. Clearly such narrow zones are unsuitable and the Mercator projection must be
limited to a narrow equatorial zone for accurate mapping.

2.7 The modified normal Mercator projection

We have just seen that Mercator is accurate only within a narrow band centred on the equa-
tor. We now show how the width of this zone may be enlarged by making the scale on the
equator less than 1, but greater than 0.9996 so that we are still with the 0.04% tolerance. We
simply modify the projection cylinder by reducing its radius (Figure 2.11). If the cylinder
intersects the sphere in the parallels at latitutiés then the radius of the cylinder must be
acos ¢1. We then demand that the scale be true on the paratigisand we can achieve

this, and retain conformality, by multiplying both equations of the transformation by the
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Figure 2.11: The modified normal cylindrical projection
factorky = cos ¢ so that they become:
¢ w
x = akg A, y = akoIn |tan 5 + 1) ko = cos ¢1 (2.46)

The definition of the scale factor in equation (2.19) shows that it remains isotropic with a
value

k(X @) = ko sec ¢ = cos ¢1 sec ¢. (2.47)

The scale factor is nowk = cos¢; < 1 on the equator and increases with latitude. If
the lowest acceptable scale factorkis= 0.9996 then we must haveos ¢;1 = 0.9996
corresponding to a value off = 1.62°. Likewise, if the largest acceptable scale factor is
attained atp = ¢, then we must have

1.0004 = k(A ¢2) = ko sec p2 = cos ¢y sec pa = 0.9996 sec ¢o. (2.48)

This equation givesos ¢2 ~ 0.9992 and ¢» = +2.29°, so that the projection is now
reasonably accurate in a strip of total width 4.58ntred on the equator. This corresponds
to a north-south distance of about 512km or 284 miles.

Thus for the modified normal Mercator projection the scale on the equator is not unity;
the parallelst¢1, on which the scale is true, are called the standard parallels of the modified
projection. If we are willing to accept less accuracy then we can take the standard parallels
at higher latitudes. For example if we take = +40° then the scale at the equator is
k = 0.76 and the latitudes at which = 1.24 are +52°. Between these latitudes the
projection is accurate to within 24%. Similar considerations apply to all normal cylindrical
projections.
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2.8 Summary of modified NMS

Direct transformation z(\, ¢) = koa(XA — o),

Mercator parameter  ¢(¢) = In [tan (d’JrW)] _ Ly [HSIHQS
4 1 —sing

Inverse transformation\(z, y) = Ao + & Y(y) =

Conformality

Scale factors

y(X, @) = koat) (o),

2 2

k‘oa’

o(x,y) = 2tan"! [exp (kf:a)] - g,

= sin~! [tanh (kgya>] ,

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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Transverse Mercator on the sphere: TMS

Abstract

TMS transformations from NMS by rotation of the graticule. Three global

TMS maps. Inverse transformations. Meridian distance, footpoint and foot-
point latitude. Scale factors. Relation between azimuth and grid bearing. Grid
convergence. Conformality, the Cauchy—Riemann conditions and isotropy of
scale. Series expansions for the TMS transformation formulae. Modified TMS.

3.1 The derivation of the TMS formulae

In Chapter 2 we constructed the normal Mercator projection (NMS). The strength of NMS
is its conformality, preserving local angles exactly and preserving shapes in “small” regions
(orthomorphism). Furthermore, meridians project to grid lines and conformality implies
that lines of constant azimuth project to constant grid bearings, thereby guaranteeing the
continuing usefulness of NMS as an aid to navigation.

As a topographic map of the globe, NMS has shortcomings in that the projection greatly
distorts shapes as one approaches the poles—because of the rapid change of scale with
latitude. However, the (unmodified) NMS is exactly to scale on the equator and is fairly
accurate within a narrow strip of about three degrees centred on the equator (extending to
five degrees for modified NMS). It is this accuracy near the equator that we wish to exploit
by constructing a projection which takes a complete meridian great circle as a ‘kind of
equator’ and uses ‘NMS on its side’ to achieve a conformal and accurate projection within
a narrow band adjoining the chosen meridian. This is the transverse Mercator projection
(TMS) first demonstrated by Johann Lambert in 1772.

The modified versions of the transverse Mercator projection on the ellipsoid (TME, see
Chapter 7) are of great importance. They are used for map projections of countries which
have a predominantly north-south orientation, such as Great Britain. More importantly they
provide a systematic framework for covering the the whole of the globe with conformal
and accurate maps. The UTM (Universal Transverse Mercator) series covers the the globe
between the latitudes &4° /N and80°.S with 60 accurate projections of widtl? én lon-
gitude centred on meridians at,®°, 1%, ... (The polar regions are always mapped with
projections centred at the poles).
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Now for NMS the equator has unit scale because we project onto a cylinder tangential
to the sphere at the equator. Therefore, for TMS we seek a projection onto a cylinder which
is tangential to the sphere on some chosen meridian or strictly, a pair of meridians such as
the great circle formed by meridians at Greenwich and®E8Ghe geometry is shown in
Figure 3.1a. This will guarantee that the scale is unity on the meridian: the problem is to
find the functionsc(\, ¢) andy(\, ¢) such that the projection is also conformal.

A
(a) Greenwich %\I (b) Greenwich: }I,\I
'a Vi
b e ¢, \
E‘W uat(})ﬁ, ‘C-! 2F
’ o xy'
S
yx'
Figure 3.1

The solution is remarkably simple. We first introduce a new graticule which is simply
the normal graticule of Figure 3.1a rotated so that its “equator” coincides with the chosen
great circle as in Figure 3.1b. Lét and )\’ be the coordinates d? with respect to the new
graticule: they are the anglédC' M’ andOC M’ on the figure. Note that, if’ is measured
positive from M’ to the ‘rotated pole’ afZ, then the sense in whicK is defined on the
rotated graticule is opposite to the sense\dh the standard graticule of Figure 3.1a. In
Figure 3.1b we have also showhandy’ axes which are related to the rotated graticule in
the same way that the axes were assigned for the normal NMS projection in Figure 2.4 so,
bearing in mind the sense af, the equations (2.28) for NMS with respect to the rotated
graticule are

r = —a\, Y =ay(¢) = aln [tan (¢' /2 + 7/4)] . (3.1)

Now the relation between the actual TMS axes and the primed axes is simply’ and
y = —x/, so that we immediately have the projection formulae with respect to the angles
(¢', X',) of the rotated graticule:

r=ay(¢)) =aln [tan (¢’/2 + 71'/4)] , y=a\. (3.2)

It will prove more useful to use one of the alternative forms of the Mercator parameter, that
in equation (2.31), giving

Y
@) [1+Sln¢], y = aN. 3.3)

ng 1 1 —sin ¢/

All that remains is to derive the relation betweg#, \') and (), ¢) by a straightforward
exercise in applying spherical trigonometry to the triangyl@/’ P defined by the (true)
meridians through the origin and an arbitrary paihtand by the great circléV’ M'PE
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(Figure 3.2a). The right-hand figure shows a similar spherical triangle in standard notation
for which the sine and cosine rules (Appendix D) are (for a unit sphere)

simnA sinB sinC

— = =, (3.4)
sina sinb sin ¢
cosa = cosbcosc+ sinbsinccos A, (3.5)
cosb = cosccosa + sincsinacos B, (3.6)
cosc = cosacosb+ sinasinbcosC. (3.7)
(®)
Figure 3.2
With the identifications
A — ) B — g, C—p,
a—d, b -6, e o N, (3.8)
the first two terms of the sine rule and the first two cosine rules give
sin ¢’ = sin \ cos ¢, (3.9)
cos ¢’ = sin¢psin \' + cos ¢ cos X cos A, (3.10)
sing = sin X cos ¢’ + 0. (3.11)

Note the simple expression fein ¢’ in terms of A and ¢; this explains why we chose the
alternative form of the NMS transformations in equation (3.3). To obtain the expression for
X we eliminatecos ¢’ from the last two of these equations. On simplification we find

tan \' = sec A tan ¢. (3.12)

Therefore our final expressions for TMS centred on the Greenwich meridian are

tO0nd) =% [1—|—sin)\cosqﬁ]

1 —sinAcos¢
y(A\,¢) = a arctan [sec \tan ¢]

(3.13)

For a different central meridian we simply replacey A — ).
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Figure 3.3: Transverse Mercator centred on Greenwich

3.2 Features of the TMS projection

In Figures 3.3-3.5 we have constructed projections centred on Greenwich (), the
Americas fy = —70°) and AustralasiaXy = 150°). The axes of these maps are labelled in
units of Earth radius. These bizarre TMS projections covering most the Earth have very little
utility other than entertainment: it is only the restricted maps near the central meridians that
have practical uses for accurate mapping: the thin boxes show how much of the projection
is used in one UTM projection (on the ellipsoid).

Many of the features of TMS can be understood by considering its genesis as an NMS
projection ‘turned on its side’. For example the central meridian Witk 0 projects to
a straight line at unit scale defining thyeaxis of the projection. It is of finite lengtha
between the poles, with the finite sections of lengtty2 above N and belowS corre-
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Figure 3.4 : Transverse Mercator centred on 70W

sponding to the inverted meridian of 18@n the other hand, the-axis is now of infinite
length sinceF andV, the ‘poles’ of the rotated graticule, are projected to infinity: we have
arbitrarily truncated the-width atz = 42.5 in the figures.

Since all other meridians pass through N and S onythagis they are in general com-
plicated curves running from top to bottom of the map. The exceptions are the meridians
at +£90° which, since they are also great circles through the E and W ‘poles’, must extend
to infinity as horizontal lines on the map. The true parallels, except the equator, map into
a set of closed curves around the palésand S; because of conformality these parallels
are orthogonal to the meridians at intersections, some of which are annotated with (lati-
tude,longitude) geographical coordinates.

The equator itself appears on the map in three horizontal lines; the ‘front’ equator lies
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Figure 3.5: Transverse Mercator centred on 150E

on thez-axis, extends to infinity and reappears as the ‘back’ equator at the top and bottom
of the projection (corresponding to the generator along which the projection cylinder is cut
open). Note that longitude increases to the right onatfexis and to the left at top and
bottom.

The grid lines which are parallel to theaxis correspond to great circles which are
‘meridians’ of the rotated graticule. On the other hand the grid lines parallel tg-the
axis have no readily defined precursors on the sphere. It is important to note that they are
parallel to the true meridians only where they cross the equator and nowhere else: the angle
between a (north-south) grid line and a curved meridian at a general point is called the grid
convergence, discussed in Section 3.6. We have also added some geographical coordinates
for grid intersections on the truncated sides and on the equator.

We shall give the formulae for the scale variation of this projection in Section 3.4.
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Here we point out that the projection is quite faithful close to the central meridian but
there are gross distortions as we move away from the central meridian—look at Africa on
the projection centred on the Americas. This is now of no concern for we shall use the
projection centred on som only near that meridian.

We know from Section 2.5 that a rhumb line, crossing meridians at a constant angle,
will reach both poles when extended on the sphere. Therefore, except for the zero azimuth
case, a rhumb line cannot be a straight line on the TMS projection. For short distances TM
maps are still suitable for navigation, particularly because conformality still guarantees a
simple relation (not equality—more anon) between azimuth and grid bearing.

Finally note that we need not have shown the inverted sections of these maps for, by
suitable choices of central meridians, what is inverted on one map will be the right way
up on some other. Observe that in plotting these maps we cannot get the inverted sections,
where eithey > 7a/2 ory < —ma/2, by using equation (3.13) with the arctan function in
its principal interval,(—7/2,7/2). However arctan is a multivalued function, arbitrary to
within an additive factor ofV. To plot the figures we used:

am Al >7/2, ¢>0
y=< 0 , +aarctan[sec\tan ¢ for ¢ |\ < 7/2, . (3.14)
—am AN >7/2, ¢<0

3.3 The inverse transformations

Equations (3.13) can be easily inverted to give

sin A cos ¢ = tanh(x/a), (3.15)

sec Atan ¢ = tan(y/a). (3.16)
Eliminating ¢ gives

sec?¢ = sin®A coth?(x/a) = 1 + cos® A tan®(y/a),
tan®\ (coth?(z/a) — 1) = sec?(y/a),
tan A = sinh(z/a) sec(y/a), (3.17)

thus determining\ as a function ofc andy.
To find ¢ as a function ofc andy multiply equations (3.15) and (3.16) to give

tan A sin ¢ = tanh(z/a) tan(y/a). (3.18)
Using equation (3.17) to eliminatan A then gives
sin ¢ = sech(z/a) sin(y/a). (3.19)
Thus the final result for the inverse transformations is
Az,y) = arctan [sinh(x/a) sec(y/a)], (3.20)
¢(x,y) = arcsin [sech(x/a) sin(y/a)], (3.21)

where we take principal values jr7 /2, 7/2] to correspond to the ‘front’ of the sphere.
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The meridian distance, the footpoint and the footpoint latitude

This is an appropriate place for three definitions which, whilst both trivial and superfluous
for the sphere, become very important when we study the inverse transformations on the
ellipsoid. LetP’(x,y) be a general point on the projection.

« Themeridian distancem(¢) = a¢ is the distance on the sphere measured along the
central meridian from the origin on the equator to a point at latitbld®n the sphere

m(¢) = aé. (3.22)

« Thefootpoint of P'(x,y) on the projection is that poin?] on the central meridian
of the projectionwhich has the same ordinate BS The coordinates of the footpoint
areP;(0,y).

« Thefootpoint latitude, ¢4, is the latitude of that poinP; on the central meridian
of the spherewhich projects into the footpoin®; (0,y). It is notthe latitude of the
point P which is the inverse of’.

®
, footpoint
TORY)] LA P(xy)
Eo<—— Z
projected y yi
central — :
meridian :
O X
Figure 3.6

From these definitions and equation (3.21) we have

¢1 = ¢(0,y) = arcsin [sin(y/a)] = y/a. (3.23)

This is obvious because, by construction, the scale of the projection is true on the central
meridian so thay = a¢; and hencey; = y/a. In terms of the meridian distance function,
defined in equation (3.22) we see thatsatisfies

m(o1) = y. (3.24)

We now take this equation as the definition of the footpoint latitude since we will find that it
continues to hold on the ellipsoid whert€¢) is a non-trivial function. For future reference
we write equations (3.20) and (3.21) as

Az, y) = arctan [sinh(x/a) sec ¢1] , (3.25)
¢(z,y) = arcsin [sech(z/a) sin ¢1] m(¢p1) =y. (3.26)
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3.4 The scale factor for the TMS projection

Because of the way in which the TMS was constructed, by applying NMS to a rotated
graticule, weknowthat the scale factor for TMS is isotropic and, in terms of the rotated
latitude ¢/, its value isk = sec ¢'. Using (3.9) and (3.15) we find the scale factor in terms

of either geographical or projection coordinates:
1
k(XA @) = 3.27
(A 9) (1 — sin? A cos? ¢)1/2 (3.27)

k(z,y) = cosh(z/a). (3.28)

[See comments after equation 2.45]. Note that the scale is a complicated function of the
geographical coordinates but is simply a function of theoordinate on the projection.
Both forms show that the scale is unity on the central meridian= ( or z = 0).

3.5 Azimuths and grid bearings in TMS

To investigate the relation between azimuths on the sphere and grid bearings on the projec-
tion we consider the relation of the infinitesimal elements shown in Figure 3.7. Now strictly,
an infinitesimal element on the projection would be a quadrilateral but we have drawn it as
curvilinear quadrilateral to emphasize the fact that the meridian, the parallelP N and

the displacemenP@ will in general project to curved lines on the map. The relevant angles
must be defined with respect to the tangents of these linBs aThe angles of concern are

(@) (b)
M| sphere Q q) +5 q)
o adh
P| acosoOr |N ¢
A A+OA

Figure 3.7

«, the angle between the meridianfabn the sphere and a general displacent&pt

o/, the angle between the projected meridian and the projected displacBMgnt

5, the grid bearing, is the angle between the projected displacement ampctiwe

~, the angle between the projected meridian andytlagis: this angle is the (grid)
convergenceof the projection af”’; in the next section we show how it is calculated.

Clearlya’ = 8 + 7.
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The construction of TMS guarantees conformality so the corresponding angled o

must be equal. Therefore
329)

or, in words:

AZIMUTH = GRID BEARING +CONVERGENCE

This equation is to be used in both directions. If we are given an azimatrsome point

on the sphere then the corresponding bearing on the map (chart) can be calculated from
8 = a— (A ¢). Likewise, given a bearing on the chart(at y) we find the azimuth

at the corresponding point on the sphere frame= 3 + ~v(z,y). Clearly we need to find
expressions for the convergence in terms of both geographic and projection coordinates.

Although the convergence can take a wide range of values on small scale TMS projec-
tions (such as Figure 3.3), remember that the projection will be applied only in the region
very close to the central meridian where the the non-central meridian lines make very small
angles with they-axis. For example, over Great Britain the convergence of the OSGB maps
is never greater thasf.

3.6 The grid convergence of the TMS projection

The figure shows a section of tH8°E merid-
ian between the equator and the north pole of the o AN
TMS projection of Figure 3.3. Since TMS is con-
formal the angle between this projected meridian
and they-axis must bel5° at the pole. The figure
also shows some grid lines and theirfcreasing)
direction of these lines is defined gad north
even though these lines, theaxis excepted, do
not pass through the north pole on the projection.
We also define the tangent of the meridianPat
to be the direction afrue north at that point even
though the tangent does not point directly to the
pole atN. We can therefore recast the definition of convergence given in the last section. It
is the angle between grid north and true north at a pBintn the projection and it is usu-
ally specified as so many degrees west or east of grid north. For more general mathematical
work we use a signed convergence defined by

O M

Figure 3.8

tany = — dz (3.30)
dy | ps

so that in the quadrant shown in the figure, where< 0 whendy > 0, the convergence
is positive. (Thus a positive convergence is to the west of grid north).
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Now the increments i (), ¢) andy(\, ¢) for arbitrary changes ip and\ are

ox ox
= 31
ox <8)\>5)‘ <8¢>5¢’ (3.31)
0
Sy = <ai> S+ ( ¢> 5, (3.32)
but the tangent aP”’ is along the projection of a meridian on whiéh = 0. Therefore
tany = — dz <8x /8y> L (3.33)
dy [sr=0 ¢ [ 0¢ Yo
v = —arctan (yi) : (3.34)

The partial derivatives must evaluated from equations (3.13); to put them in simpler forms
we use equation (3.9) and some equivalent forms

sin ¢ = sin A cos ¢, (3.35)

cos’¢) =1 — sin®\ cos®¢ = sin?¢ + cos®\ cos?¢p

= cos?\ + sin¢sin®\ = cos?A cos?¢ (1 4 sec? X tan?¢). (3.36)
Therefore
a 1+ sin A cos ¢

_a _ 37
T =3 n[l—sin/\cosqb]’ y = a arctan [sec A tan @], (3.37)
T asec? ¢’ cos A cos ¢ % — asec®¢’ sin Asin ¢ cos ¢ (3.38)

O\ ’ o\ ’

Ox 0

8¢ = —asec?¢’ sin Asin ¢, a—g = asec’d’ cos \. (3.39)

The convergence as a function of geographic coordinates follows from equation (3.34):
v(A, ¢) = arctan (tan Asin @) . (3.40)
This result can be written in terms efandy by using equation (3.18) giving
v(z,y) = arctan | tanh(z/a) tan(y/a)]. (3.41)
It will prove useful to write this result in terms afand the footpoint latitude as

v(x,y) = arctan [ tanh(z/a) tan ¢ |, m(¢p1) =y. (3.42)
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3.7 Conformality of general projections

So far we have claimed, fairly, that TMS is conformal with an isotropic scale factor by virtue
of the method we used to derive the projectioir NMS ‘on its side’. It is instructive to ask

how we may decide that an arbitrary projection from the sphere satisfies these conditions.
To this end consider Figure 3.7 where the azimuth angle of the displacdbdgmin the
sphere is given by

. cospoA . P
tana = 51_r)np (;Z = (%EHP R%,
where (for future developments) it is convenient to Bet cos ¢. Now consider the grid
bearing of the corresponding displacemé&i€)’ for an arbitrary projection. Using equa-
tions (3.31, 3.32), with the constraint implied by the above equation, we have
ox . ZAON+ 200 _ mytana + zuR

tan 8 = lim — = lim = .
f dy YAOX + ypd PP 1> tana + ygR
an o

(3.43)

(3.44)

We already knowtan ~ from equation (3.33), therefore we can calculatethe angle be-
tween the projected meridian and parallel, as

, tan 3 + tan -y
- — AngTrany 4
tana’ = tan(8 + ) T~ tan 3 tans (3.45)
_ yplmatana+z4R) — zg(yrtana + yuR)
Yyo(yrtana + ygR) + zy(xrtan o+ 24 R)
_ (@AYg — Tpyr) tan o (3.46)

R(x3 +y3) + (2amg + yays) tan '
The projection will be conformal ifan o/ = tan a so that
(22T + Yryy) tana + [R (a:i + yg) — (22Yp — Toyr)] = 0. (3.47)

This is an identity which must hold for all values @f therefore the coefficient afin o and
the constant term must both vanish. This gives two conditions:

TATy +YrYp =0 (3.48)
R (23 +y3) = (2AYs — ToUn)- (3.49)
Using (3.48), the second of these equations can be written as
Ryi (1+ xi/yi) = )yp (1+ azi/yi) , (3.50)
so that we must have, = Ry,. If we then substitute this back into (3.48) we obtain
yn = —Ruxy. Thus, restoringR, the following conditions are necessary (and trivially

sufficient) for a conformal transformation from the sphere to the plane.

CAUCHY—RIEMANN Ty =COSPYp, Yr= —COSO Ty (3.51)

It is trivial to check that these Cauchy—Riemann conditions are satisfied for both NMS and
TMS: in the first case have (from 2.28)=a, ys=asec ¢ andzg=y\=0; TMS follows
immediately from equations (3.38, 3.39).
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Conformality implies scale isotropy

Consider now the scale factor for an arbitrary transformation. Substitétirrgnddy from
equations (3.31 , 3.32) into the definition of the scale factor (equation 2.19) we have
p? = lim 05" = lim o2 + Oy”
Q—P 052  Q—P a2d¢? + a2 cos2¢ N2
_ lim E§¢? + 2F5¢ 6\ + GON
Q—P  a2002 + a2 cos2p o2

(3.52)

where
E\¢)=a5+y5  F(\o) =aaas+mye.  GA¢)=a5+1y5 (353)

An isotropic scale factor must be independent of the azimgith other words (from 3.43)
it must be independent of the ratio &/6\. This isalwaysthe case when the Cauchy—
Riemann equations (3.51) are satisfied, for then we must Rave(0 andG = cos?¢ E.
The isotropic scale factor is thanFE /a or

ISOTROPIC SCALE | k(X ¢) = &1 /23 + 42 = acéw 22+ 12

(3.54)
ThereforeaLL conformal transformations have isotropic scale factors. Itis a simple exercise
to show that the above equation reducesetop for NMS and tosec ¢’ for TMS; for the
latter use equations (3.35—3.39) to confirm the results of Section 3.4.

3.8 Series expansions for the unmodified TMS

In the calculations for the transformations on the ellipsoid we shall have to resort to series
solutions. In this section we will derive the corresponding series for TMS. For the direct
transformations we holg constant and expand in terms ofand for the inverse transfor-
mations we holdy constant and expand in termsofa. Typically the half-width (at the
equator) of a transverse projection is aboub8 the sphere and about 330km on the pro-
jection so that\ < .05 (radians) and:/a < 0.05. We shall drop terms involving fifth or
higher powers of these small parameters.

The coefficients of the direct series involve trigonometric functiong,aihich is not
generally a small term: for exampien ¢ is about 1.7 a60°N. Likewise, the coefficients of
the inverse series will be functions of the footpoint latitygevhich again is not generally
small. It is convenient to introduce the following compact notation for the trigonometric
functions of¢ and¢; :

s =sging c=cos¢ t = tan ¢ (3.55)
$1 = sin¢y c1 = cos ¢y t1 = tan ¢y m(¢1) =y, (3.56)

wherem(¢) = a¢ is the meridian distance ang is the footpoint latitude.
All of the Taylor series that we need for the expansions are collected in Appendix E.
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Direct transformation for x

Equation (3.13a)is z = “In 1 +sinAcosé 2 M .
1 —csin A

2 1 —sin Acos ¢ T2 .
Sincesin A <« 1 we first expand the logarithm with (E.12) and then substitutesiion
with (E.13) to obtain

fU(A,cﬁ)=ac()\—é)\3+..-)+éac3()\_...)3+...

1
= ach + 6ac3(1 — N 4 (3.57)

Direct transformation for y

Equation (3.13b)is  y(\, ¢) = a arctan [sec A tan ¢] = a arctan [t sec A].

The argument of the arctan is not small but, using (E.16), we have

1 5
tseed=t(14+ =22+ X\ 4...
sec < +2 -|-24 + )

. 1 5
=t with z=1¢ A2+ =X\ +... 1.
+ 2, z (2 +24 + > <

Using (E.9) withb = ¢ we have

y(\, @) = aarctan(t + z)

1 1 1 2 (—t
= aarctan(t) + at (2)\2 + 2511)\4) + at? <2)\2 4. > (()

Now a arctan(t) = a arctan(tan ¢) = a¢ SO we can write

asc %

y(A, @) = ap + 7)\2 + g

24

(5—t*) +---. (3.58)

Inverse transformation for A
Settingy/a = ¢1, the footpoint latitude, equation (3.20) is
Az, y) = arctan [sinh(z/a) sec(y/a)] = arctan [cl_l sinh(z/a)] .

Sincesinh(z/a) < 1 we can expand with (E.20) and then substitute with (E.21) giving

x 13 1 /z 3
Mz,y)=c' [Z4+ =25+ ) = —37<7 >
(z,y) = ¢ <a+ + ) ‘3 a+ +

6 a?
w3 (55 ()
= 611 (g) — “gjt%) (2)3 + where ¢ = y/a. (3.59)
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Inverse transformation for ¢
Settingy/a = ¢1 in equation (3.21) gives
¢(z,y) = arcsin [sech(z/a) sin(y/a)] = arcsin [s; sech(z/a)] .

We first use (E.24) to write

sysech(z/a) = s1 (1 - % (§>2 + 2571 (%)4 +)

—si+z  with 2= 1<x>2+5(x)4+
T T2\ Tar\y

Using (E.8) withb = s; we obtain

_ . s1 L2 5 rayd
d’(xay) = arcsin sy + (1— S%)1/2 ( 2 <a> + 24 (a) )

+1 51 9 1(x)2+ 2+

- 2= (2
2(1-s2)3271\ 2\a

xT

2 4
=¢1 — %1 (g) + %(5 + St%) (2) 4+ where ¢; =y/a. (3.60)

Series expansion for the scale factor

Using the binomial series (E.29) with= —sin® A cos? ¢ = —c?sin? A and substituting
for sin A with (E.13), we find that equation (3.27) gives

k(X @) = [1 — sin® X cos® ¢] /2

1 1 2
=1+ ¢ (A—/\3+-~> +§c4(/\—---)4

2 6
1 1
=1+ 562/\2 + ﬂc4)\4(5 — 4t - (3.61)

Similarly equations (3.28) and (E.22) give

k(x,y) = cosh(z/a) = 1+% (§>2+% (2)4+-~- . (3.62)

Series expansion for convergence

Equation (3.40) isy(), ¢)=arctan [ tan Asin ¢|. Expandingtan A with (E.15) and using
the expansion for arctan in equation (E.20) gives

YA 9) =s(A+ (1/3)A° + ) = (1/3)s° (A +---)°
=sA+ ésc%ﬁ +-- (3.63)
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Equation (3.41) is
7(x,y)=arctan [ tanh(z/a) tan(y/a)|=arctan [¢; tanh(z/a)].

Expandingtanh(x/a) for smallz with (E.23) and again using (E.20) for arctan gives

s =t (E-g (5) ) (T4-)]

(235 =

3.9 Modified TMS

In Section 2.7 we showed how the NMS was modified to obtain greater accuracy over wider
areas by reducing the scale factor on the equator. We do the same for the TMS, reducing the
scale on the central meridian by simply multiplying the transformation formulae in equa-
tions (3.13) by a factor oky. The corresponding equations for the inverses, scale factors
and convergence are easily deduced: they are listed below along with the corresponding
series solutions. We continue to use the abbreviations for the trig functiopsanél ¢,
(equations 3.55, 3.56)

Direct transformations

1 1+ sin Acos ¢ 153 )
= 3 1 e — = — 1 _ . .
z(A, @) 2koct n{l—sin)\cosqﬁ} koa <c/\+6c A(1—t%) + (3.65)
sc sc\
y(\, ¢) = kpaarctan [sec Atan ¢] = kom(¢)+koa <2)\2+24 (5—t2) 1. )
(3.66)

Note that on the central meridian given by= 0 we havey(¢,0) = kom(¢) = koao.
Therefore for the modified projection we must define the footpoint latitude by

b1 = % (3.67)

Inverse transformations

1 1+ 263 °
Az, y) = arctan [sinh;sec y} = <x> ) <x> +

oa koa C1 koa 601 koa
(3.68)
¢(z,y) = arcsin sech —— sin —2— =¢ bz 2+L1(5+3t2) x 4+
) koo kea| ' 2 \koa 24 Y\ koa
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Convergence
1
v(A, @) = arctan(tan A sin ¢) = s\+ 5302)\3 + . (3.70)
_ i U g (B) 2 Lhmy?
v(x,y) = arctan <tanh o tan k0a> =1t (a) 36 (a) + (3.71)
Scale factors
k(N @) = i =k 1+12A2+i4x4(5—4t2)+--- (3.72)
T (1= sin? Acos2 g)1/2 0 2° 24" '
k(x,y) = ko cosh [ —— TS PO Y (0 R G (3.73)
Ty = Rocos koa - 2! \ koa 4! \ koa '

Consider the scale factor in terms of projection coordinates, th#étig)). If we choose
ko = 0.9996 then we easily find that the scale is true whefla = +0.0282 corresponding
to x = +180km (approximately). Once outside these lines the accuracy decreases as
increases without limit. (The value éfreaches 1.0004 when= 255km so thatt increases
from 1 t0 1.0004 in a distance of 75km. This is less than half of the distance over which the
scale changes from = 0.9996 on the central meridian to = 1 atz = 180km.)

Thus we see that the modified TMS is reasonably accurate over a width of approxi-
mately 510km. We shall see later that this includes most of the area covered by the British
grid.
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Chapter

NMS to TMS by complex variables

Abstract

The methods of complex variable theory are used to derive the TMS from NMS
by (a) an explicit closed formula, and (b) a Taylor series expansion.

4.1 Introduction

In Chapter 2 we derived the NMS projection: it takes a pdhi$, A\) on the sphere to a
point on a plane defined by projection coordingtesy) with

T = a, y=ayp =aln [tan <<§+Z>} . 4.1)

Similarly, in Chapter 3 we derived the TMS projection: it takes a pétp, A) on the
sphere to a point on a plane defined by projection coordirfateg with

_a 1+ sinAcos¢
(9, A) = 2 n [1 — sin A cos gb} ’ (4.2)
y(¢p, \) = a arctan [sec A tan ¢] . (4.3)

In addition to these closed forms we also derived series expansions for TMS which neglect
terms of orden\> and higher:

1
x(A\, @) = ach + gacg’(l — t2)/\3 + e (4.4)
3)\4
v\, B) = ad + %AM“E (5—12) 4. (4.5)

The purpose of this chapter is to show how the above projection equations for TMS , both
closed forms and series, may be derived directly from the NMS projection equations. To
avoid confusion of the two sets of projection coordinates we shall reserye for the TMS
projection and refer to the NMS projection by coordinat®sy)))—note the order. For the
transformation from NMS to TMS we seek functiong\, ¢») andy(\, v): for the inverse
transformations we seek two functiohér, y) andy (z, y): the latter then gives(x, y) by
inverting one of (2.28, 2.32) or by a Taylor series.
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M TMS
- v < NMS - y
[
I P:(k,w) I U I |
! | | =ra .P"(X,y) |
I K'(0,y) | | |
: k=1 : 7\‘ | K (05Y) |
I O| cquator r o cquator ' X
I
I I
cm| ool _ ol
E: E: x(Ay)  yhw) o :_ ] em |
I—:Oo______J y—:_?ca—— ______
Figure 4.1

Figure 4.1 summarizes the properties of the two projections. NMS is conformal, true
to scale on the equator (theaxis), with finite extent im and infinite extent inp. TMS is
also conformal, true to scale on the central meridian Hagis), with finite extent iry and
infinite extent inz. A general point on the sphef®¢, \) projects into pointd’(\, ¢) and
P’ (z,y) for NMS, TMS respectively; a general point on the central meridian of the sphere,
taken as the Greenwich meridian for simplicity, projects into paitit€), «») and K" (0, y).
We shall prove that the following conditions are sufficient to determine the functiong))
andy(\, ¢¥) which define the transformation of NMS to TMS.

« The central meridian of NMS\ = 0, transforms to the central meridian of TMS:
z(0,7) = 0. (4.6)

« The scale on thg-axis of TMS is true so that the distan€d<” on TMS is equal to
OK on the sphere; therefoge= m(¢) = a¢.

« The functionsz(), ¢) andy(\, ) must describe a conformal transformation: any
two lines throughP’ project into lines intersecting at the same angl&’at

The first of these conditions is trivial but the others require further discussion.

The meridian distance as a function ofyy

We need to consider the meridian distance as a fundtiasf ) as well as the usual function
m of ¢; we equatel/ ()) andm(¢) or, more strictly, we set

M () = m(o(). (4.7)
Thus the scale condition on tlyeaxis may be written as
y(0,9) = M (). (4.8)

On the sphere, whera(¢) = a¢(¢), we can use equation (2.32a) to obtain an explicit
expression foV/ (1):
M (1)) = aarctan [ sinh(¢)]. (4.9)
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In our subsequent calculations we shall need the first four derivativi& gf) with respect

to 4. These are straightforward enough to obtain as functions fobm the last equation
but, at the end of the day, it will prove more useful to express the derivatives in terns of
For example we have

= dM(Y) _ dm(¢)@ =acos¢ (4.10)

dp — dp dy

where we have used the equation

M (1))

dip

v _ 4.11

s sec ¢ ( )
which is the definition 0i)(¢) in Section 2.4. Proceeding in this way we can construct the
first four derivatives ofV/ (1)) with respect ta) but with the results expressed as functions
of ¢ (using the compact notation fein ¢ etc.defined in Section 3.8).

M' = acos¢ = ac,
s d(acos ¢) do — ase,
dp — dy
M" = —a(c® — 5%)c = —ac3(1—1t?),
M" = —a(—=3sc — 2s¢® + 53¢ = asc®(5 —t?). (4.12)
Sphere cm NMS cm T™S

K" P"
0,y) xy)

o o 0 X
Figure 4.2

The footpoint parameter 11

In Section 3.3, where we discussed the inverse TMS transformations, we introduced the
footpoint and the footpoint latitude. In considering the inverse transformations from TMS
to NMS it is useful to introduce thiotpoint parameter ;. All of these parameters are
indicated in Figure 4.2 which shows tfe, ) plane of TMS and the central meridians only

of NMS and the sphere. Given a poifif (z, y) the footpoint in the TMS plane i&” (0, y)

and the footpoint latitude; at K on the sphere is such that(¢;) = y. The footpoint
parameter in the NMS plane is defined as the p&if(0, 1);) such that

M (1) =y = m(e1). (4.13)
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Figure 4.3

The conformality equations and complex functions

It is very straightforward to determine the equations which restrict the functiohs))
andy(\, v) if the transformatior\, ) — (x,y) is to be conformal. Consider infinitesimal
elements af”’ and P’ as shown in Figure 4.3. Comparing this figure with Figure 3.7 we
see that there are only two significant differences. First of all the apgreFigure 3.7

has been replaced hy, secondly the factor ofos ¢ is absent. We can now construct the
tangents of all the relevant angles exactly as we did in Section 3.7; imposing conformality
by demandingy’ = o we obtain the equations (3.51) withreplaced by andR = cos ¢
replaced by unity.

CAUCHY—RIEMANN Ty =Yy, Yr= —Ty (4.14)

Satisfying the Cauchy—Riemann conditions and fitting the scale condition grakis,
namelyy(0,v) = M (), is a non-trivial problem. It becomes much more tractable when
we use complex numbers to effect the transformation. The basic idea is to associate with
the pointP’()\, 1) of NMS a complex numbef = A + ). Form a new complex number
by constructing a function((); the real and imaginary parts efare then used to define the
coordinates of a poin®”(z, y) in TMS. Clearly this construction defines two real functions
x(A,¢) andy(A, ). The theory of complex numbers tells us that if the functidg)
is differentiable (or analytic, an equivalent term) themndy mustsatisfy the Cauchy—
Riemann conditions and define a conformal transformation.

There is a (very) concise introduction to complex functions in Appendix G. Here we
consider a trivial example of a conformal transformation. Consid¢y = ¢ + ¢2: this is
differentiable, givingz’(¢) = 1 + 2¢2. Usingi? = —1 we have

2(Q) = ¢+ ¢ = (A+iY) + (M) = Mrinh + [N24-2i g — 7]
= A+ A2 =2 (4 2\). (4.15)
Taking the real and imaginary parts defines the functiefs 1v) = X\ + A2 — 4?2 and
y(X\, ¥) = ¥ + 2\ which satisfy the Cauchy—Riemann equatioens= y,, = 1 + 2\ and

yx = —xy = 21¢0. On the other hand this example does not satisfy the boundary conditions
x(0,1)=0 and andy(0, ¢)=M (v) of equations (4.6), (4.8) and (4.9).



Chapter 4. NMS to TMS by complex variables 4.5

4.2

A
\ \ {~plane Y z—plane /
.P'—,(O «Q) P

46)

Figure 4.4

Transformation to the TMS series

The stages of the transformation are summarized in the above figure. We proceed anti-
clockwise from the sphere and derive the series solutions for TMS that were presented
in Chapter 3, albeit at a very low order which which would be inappropriate for accurate
mapping. The same steps will be used when we come to the ellipsoid projections.

Start at a general point on the sphere with coordin&tes \) and map to the NMS
plane atP’ (), ¢) with 1) the Mercator parameter for the sphere.

Associate this point with the complex numiges X + it in the complex(-plane.

Use a differentiable function(¢) to construct a conformal map from the complex
¢-plane to the complex-plane.

Let 2 andy be the real and imaginary parts of parts:afo that
2(¢) = (A, ¢) +iy(A, ¥). (4.16)
Expandz(¢) in a Taylor series about a poi¢g on the imaginary axis\=0).
Demand that the central meridians correspond.
z(0,7) = 0. (4.17)
Demand that the scale be true on the central meridian in-filane.
y(0,9) = M(¢). (4.18)
The result is a pair of series farandy agreeing with those derived in Section 3.8.

Invert the Taylor series to find(z) and use the real and imaginary parts to find the
series for\(z,y) andy(z, y).

Find ¢(x,y) from ¢ (x, y).
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The direct complex Taylor series

The Taylor series for(¢) about a pointy = iy on the imaginary X = 0) axis of the
¢-plane is

2(¢) = 20+ (¢ — ¢0)2'(¢o) + %(C — ¢0)*2" (Co) + %(C — 022" (Co) + -+ . (4.19)

Equation (4.17) implies thafy = z({p) is on the imaginary axis of the-plane so that we
must haveyy = iyp. Then equation (4.18) implies thgs = M (1)y). Thus the leading term
in the expansion may be recast in various forms as and when required:

z0 = 2(Co) = iyo = 1M (vho) = iMo (4.20)
' N
C=A+y
(I
Figure 4.5

It is instructive to consider the derivatives 4f() from first principles, (as in (G.27):
oy e 26+ 6C) — 2(C)
2(0) = 5141210 8¢ '

Now because(() is analytic we know that this limit is independent of direction and we
choose to take it in the direction so that A = 0 andd{ = id1p. Therefore we have

ey = (L4
Once again, equations (4.17) and (4.18) imply th@t) reduces taM (¢) at an arbitrary
point on the imaginary axis. therefore

(4.21)

(o) = (—@) @) = M)
#(Go) = (—;fb) are)| =)
2(Go) = (—d‘fp) (~')| = M),
1 o . d M — M 4.23
. (Co)—<—ldw>(— )| = ) (4.23)

Finally, if we abbreviateM’ ()= M, M"(o)=DM] etc.,the Taylor series (4.19) may
be written as

= 2 (o) M — 51 (C—Go) MY = (C=Co M+ (C—Go) MY -+ | (4.28)
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The direct series forx and y

When we derived the direct series in Section 3.8 we expandedly as power series in
keepingy constant. Now constagton the sphere corresponds to constain the (-plane.
Therefore, if we start from a given poift (), 1)) in the( plane, that is a giveq = \ + i),
we must choose, at K’ with thesameordinate, that i, = i1): see Figure 4.6. Therefore
in the Taylor series (4.24) we must set(y = (A +iv)) — i = X so that it becomes a
power series irh. Moreover we must evaluat®/ and its derivatives withyy = v so that
zp = iMo—iM andM)— M’ etc. Thus

. . .
2=+ iy = iMAAM' — %A2M”—§A3M”’+%A4M’”’ . (4.25)
v .
{=AHy
=1 _z0
yOle(l'I)
Figure 4.6

The real and imaginary parts of equation (4.25) ghandy as functions ofA and. The
derivatives ofM are real so that the transformations from NMSMS are

1

z(\, ) =AM’ — §A3M”’+-~ (4.26)
1 1

y()\’w):7‘[_5/\2?‘[//_‘_@)\47‘{///1_’__"' (4.27)

On substituting forM/ and its derivatives using equations (4.12), we obtain the correspond-
ing expressions in terms ofand¢ (with s = sin ¢ etc.) which define the transformation
from sphere to TMS:

(A, @) = ack + %ac3(1 — N+ (4.28)
1 1
y(\, @) = ap + 2145C 22+ Easc3(5 — )N 4 (4.29)

These results agree with the expansions obtained in equations (3.57, 3.58).

The Cauchy—Riemann equations

It is instructive to verify that the (plane to plane) Cauchy—Riemann equations (4.14) are
indeed satisfied by equations (4.26) and (4.27) (at least if the series are continued to infinity).
Evaluating the four partial derivatives we have

1
ra= =M - XM (4.30)

1
Ty = —yr = AM" — §>\3M”” R (4.31)
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Note also that the equations (4.28, 4.29) satisfy the the Cauchy—Riemann equations (3.51)
which apply to the transformation from tisphereto the TMS plane. Explicitly

1
Ty= COSPYy=ac+ 5@03(1—752))\2-- , (4.32)

1
Yy = —cos¢x¢:asc)\+§ascg(5—t2))\3+'~ . (4.33)

The inverse complex series: method of Lagrange series inversion

The simplest method of obtaining the inverse series is to use the Lagrange series expansions
described in Appendix B; in particular we use the inversion of a fourth order polynomial as
described in Section B.4. The beauty of the Lagrange expansions for simple polynomials is
that the coefficients can be determined once and for all and applied in various contexts as
need arises.

We start by writing the direct Taylor series (4.24) as

z — 29 bo b3 by
M = ((—Co) + E(C—CO)Q + g(C—Co)?’ + E(C—Co)4 + - (4.34)
where
M(/)/ M(/)// ‘M[/)///
— ;270 S = ) 4,
b2 ZM(/), b3 M() s b4 1 Mé ( 35)

The series (4.34) and (B.13) are identical if we replae@d( in the latter by(z — zo) /M,
and( — (o respectively. Using (B.14) we can immediately find the inverse series of (4.34)

as
G-\ P2 (r—2\ b3 (z—z0)\ pafz— %\
o= () -5 G) -5 G -5 Gg) ] e
where thep-coefficients follow from (B.12):
MY
p2 = be = - M(Z)
M/l/ (M//)Q
— ba — b2 — _ 0 0
e TN
B 3 ,L'M(/)I// ] M6/M6// ) (M(/)I)S
pa = by — 10byby + 15b3 = M —10i AL +15i e (4.37)
Using equations (4.12), these become
p2 = S0
p3 = cp(1+2t5)
pa = —isocs (5 + 6t2), (4.38)

with ¢y = cos ¢ etc.are the usual abbreviations.
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The inverse series forp and A

When we derived the inverse series in Section 3.8 we expak@ed ¢ in power series in

x keepingy constant. The corresponding approach for the complex planes is indicated in
Figure 4.7. We start with a given poift’(z, y) on the projection corresponding to the point

2z = z+iy in the complex-plane. Lety = iy be the pointK” in thez-plane corresponding

to the footpoint ofP”. Clearly this point projects back to the central meridian of(fgane

v {=A+Hy y z=xHy
P‘
&(2) k" P
MW)=y

Figure 4.7

at the point(y = i)y where M (v) = y, that isy is the footpoint parameter defined in
Figure 4.2. With these choices we see that we must sety = (z + iy) — iy = x in
equation (4.36) giving a power seriesaras required.M and its derivatives must now be
evaluated at);. Denoting these derivatives iy etc.equation (4.36) becomes

2 3 4
. . & p2 [ p3 (X Py (2
A - =— —Z|—=) - =) = |- 4.39
L VIR <M{) 3l <M{> 4l (M{) * (4.39)
where thep coefficients are also evaluatedt using equations (4.37) with/) — M,

etc. Taking the real and imaginary parts (noting thatis real whilstp, andp, are pure
imaginary) we find

T 1 T 3
Mz,y) = 5 — 503 |5 4.40
@) = 57— 3 () + (4.40
1 z\? 1 z \*
Y(w,y) =1 — ﬁlm (p2) <]\4{> - @Im (p4) (J\ﬂ) +oeee (4.41)

Now substitute for the-coefficients from equations (4.38): these coefficients must now be
evaluated at the footpoint latitude = ¢(v1) corresponding to the footpoint parameger
SinceM; = ac; (equation 4.12) and we find

Mz, y) = —= — —= [1+2£]] (%)3 T (4.42)

1t (x)Z lti

2! C1 a 4! C1

: [5+6t2] (2)4 T (4.43)

The series fon is in agreement with equation (3.59) but we must now derive the series for
¢ from that for.
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The inverse of the Mercator parameter

The last equation determings— ), as a power series inwith coefficients evaluated at the
footpoint latitudep,. To obtain the corresponding series &owe first construct the Taylor
series expansion @f(1)) about the footpoint parametet; :

_ d¢ 1 o &0
Once again we could use equation (2.32)a to find the derivative$of in terms of the
footpoint parametet); but we obviously need to express the derivatives in terms arid
evaluate them at;. Again we proceed from the definition ¢f(¢) in Section 2.4:

NI (4.44)
1

d d dip\
;ljf; = di(cos ¢) = —sin qZ);lZ = —sin ¢ cos ¢. (4.46)

Substituting these derivatives into the Taylor series, and setfing) = ¢, we have
1 :
=61+ (¥ —r)cosdr — (Y — 1) sindrcos gy + . (4.47)
The inverse series forgp

Substituting fory — 11 from equation (4.43) gives, to ordér/a)?,

o) = n+ [~ (5) 4 (2) o] 2

2! a
L[ 1 /x\2 24\ 2
] [‘m(a) +] <1> s1e1
which simplifies to b 4 .
o(z,y) = ¢1— 5 (5) + 5[5+ 3] <E> T (4.48)

wherem(¢1) = a¢1 = y, in agreement with equation (3.60).

4.3 The inverse complex series: an alternative method

Another way of deriving the inverse series is to take the development given in the first part
of Section 4.2 and run it backwards from thelane to the -plane. That is we assume the
existence of an analytic functiaf{z) such that (a) the central meridian maps from- 0

to A = 0 and (b) on the)-axis the scale is true. Therefore

((2) = A=, y) +ivb(z,y), (4.49)
A0,y) =0, (4.50)
$(0,y) = M (y), (4.51)
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whereM (y) is an inverse td () in the sense that/ (M (y)) = y andM (M () = ¥
The Taylor series analogous to (4.24) is then an expansia@iiz0fabout a point on the
zp = iyo on they-axis of thez-plane:

— — 1 — —
((2) = Co+(z—20) Mg — 5(Z—ZU)QMG'—Q(Z—ZO)BM3'+@(Z—ZO)4M6'" 4+

_ _ (4.52)
where(y = iy = iM (yo) and the derivatives af/ are with respect tg aty.

Now although it is straightforward to construct the functib_h(y) on the sphere we
shall construct its derivatives from thosedf(v)). We start by differentiating the identities

y=M(M(y)) = M(¥), (4.53)
Y =M (M) =My), (4.54)
to give
dy Y ﬂ vy
= M), , = M), (4.55)
Therefore, as long a&/’(vy)) # 0, we have
—, @ _ 1
M'(y) = dy = (D) (4.56)
and in general
ac) 1 d() (4.57)

dy — M) dp
Itis now straightforward to calculate all the derivatives in equation (4.52). For compactness

we suppress the argumeftn M (i) and all its derivatives)’ (v), M" (¢) etc.Comparing
the results with the-coefficients in equation (4.37) we find

M) = 15 S
M"(y) = ]\Z’;Zw :J\T(y)} = ]\14,;; [J\H = —% - ;j{’;,
0 5] - B ] -
M"™(y) = ]\Z’jﬂ) :M/'/(y)] . (J\z\?//;; + 10]\5%(;” - 15((]]\\44’,/;:) - ;5:

(4.58)

Substituting these derivatives (evaluategg@for M and atg, for M) into equation (4.52)
clearly gives a complex series identical to that of (4.36) and the same results follow. We
choose not to follow this method since the calculation of the derivatives to eighth order for
the ellipsoid becomes very intricate.
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4.4 The closed formula for the transformation

Finally, we present a closed analytic expression whose real and imaginary parts give the
TMS transformations of equation (4.2). This section does not readily generalise to the
transformations on the ellipsoid: it is included as an interesting digression.

Finding a conformal transformation which satisfies given conditions is not always sim-
ple: there is no general technique and we have to rely mainly on our experience—and the
fact that there are books which give exhaustive lists of the conformal transformations which
have been studied in the last two hundred years. The required transformation is

z = % — 2ia arccot [exp(—i()] (4.59)

We now verify that this transformation has the required properties. Substituting + iy
and¢ = X + i1 in the above gives
cot <$ i + 7r> !

= cot (Z S 22) = exp(—i\ + ). (4.60)

—2ia 4 2a

The real and imaginary parts of the cotangent function are given in Appendix G, equa-
tion (G.17). We substitutel = 7 — % andB = % in that identity but to clarify the

algebra we temporarily replace’a andy/a by 2 andy respectively. The result is
_ isinh
COSY —ISIAT € (cos A — isin \). (4.61)
coshx —siny

Taking the real and imaginary parts gives

B — — =e’cosA=p (4.62)
coshx —siny
inh
ST _esina =g (4.63)

coshx —siny

Re-arranging these equations and also taking their quotient gives

cosy = pcoshx — psiny, (4.64)

sinhz = gcoshx — ¢siny, (4.65)

cosy = P sinh . (4.66)
q

Eliminatey from (4.65) and (4.66) usings®y + sin?y = 1; eliminatez from (4.64) and
(4.66) usingcosh?z — sinh?z = 1. On simplification we find

2q 2e¥ sin \ .
tanhx:p2+q2+1 = @i = sin Asech 1, (4.67)

2 .2 v
PPt -1 e -1 ,
tany = R i v— = sec Asinh . (4.68)

This is the final result for the real and imaginary parts of the transformation from the com-
plex {-plane to the complex-plane.
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The final step is to transform from to ¢ in (4.67,4.68) . To do this we use the inverse
expressions from equation (2.32), that is

sinh ¢ = tan ¢, cosh Y = sec ¢, (4.69)
and equations (4.67, 4.68) become

tanh 2 = sin A cos ¢, (4.70)
tany = sec A tan ¢. (4.71)

The second equation agrees directly with giteansformation equation (4.2) after restoring
y — y/a. Equation (4.3) for the: transformation follows since

1+sinAcos¢ 1+tanhae  coshzx +sinhz 2e” o, gwla
_ _ R ‘

= = = 4.72
1—sinAcos¢ 1—tanhz coshx —sinhx 2e % ( )

The Cauchy—Riemann conditions

To check the Cauchy—Riemann equations (4.14) we evaluate the partial derivatives of
andy from equations (4.67) and (4.68):

(sech®z) z)y = cosAsech), (sec’y) yx = sin Asec’Asinh v,  (4.73)
(sech®z) z,, = — sin A sinh ¢ sech?¢, (sec®y) yy = sec Acoshtp (4.74)

and simplify using

sech?z = 1 — sin®sech?y) = sechzw[COSth — sinz)\], (4.75)
sec’y = 1 + sec?\sinh?y) = secQ)\[coshQ@ZJ — sin2)\]. (4.76)



4.14 Chapter 4. NMS to TMS by complex variables




Chapter

The geometry of the ellipsoid

Abstract

Cartesian coordinates. Geodetic and geocentric latitude. Parameters of the
ellipsoid. Parameterisation in terms of geodetic latitude. Relation of Carte-
sian and geographical coordinates. Reduced latitude. Curvature. The metric.
Meridian distance and its inverse. Rectifying latitude.

5.1 Coordinates on the ellipsoid

We now model the Earth as an ellipsoid of revolution for which the Cartesian coordinates
with respect to its centre satisfy
X% y?
PRI
The definition of longitude\ is exactly the same as on the sphere. gbedetic latitudeg,
which we will simply call the latitude, is the angle at which the normaPantersects the
equatorial planef = 0). The crucial new feature is that the normal does not pass through

z_ (5.1)

(b) z

Figure 5.1

the centre of the ellipsoid (except whéhis on the equator and at the poles). The line
joining P to the centre defines tlgocentric latitude ¢.. We introduce the notatiop(¢)

for the distance” N of a pointP from the central axis and we also $€t) for the length

C P of the normal afP to its intersection with the axis. Therefore

p(¢) = v(p)cosp =V X2+ Y2 (5.2)
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5.2 The parameters of the ellipsoid

Instead of usinda, b) as the basic parameters of the ellipse we can use éiihey where
e is theeccentricity, or (a, f) wheref is theflattening. These parameters are defined and
related by

a—b

b =a?(1 — é?), f= — e =2f — f2 (5.3)

For numerical examples we use the values for the Airy (1830) ellipsoid which is used for
the OSGB maps:

a = 6377563.396m, e = 0.0816733724, f =0.0033408505,

1

7 = 299.3249753. (5.4)
The flattening of the Earth is small. For example, in the figures on the previous page the
difference between a sphere of radiusnd the ellipsoid should be about the width of one of

the lines in the figure. Thus the ellipses shown here, and elsewhere, are greatly exaggerated.

b = 6356256.910m, e? = 0.00667053982,

Other parameters used to describe an ellipse

There are several other small parameters which arise naturally in the study of the properties
of the ellipse. Two which we shall need are: (a) the second eccentwtitgnd (b) the
parametern, (sometimes;). They are defined by

2 _ 32 2
o a”—b" e __a—b
e® = L n_el_a—i—b' (5.5)

There are many possible relations between all these parameters. For example we will need
the following results:

_ o1z, (14n
a—b(l e) _b<1n> (5.6)
=b(1+2n+2n*+2n°+---), (5.7)
b\ > 1—n)\? 4dn
2_q1_(2) _4_ —
=1 <a> 1 <1+n> (14 n)? (5-8)
=4n(l —2n+3n? —4nd + .. .). (5.9)

5.3 Parameterisation by geodetic latitude

The equation of the cross-section ellipse follows from (5.1) and (5.2):

2 2
P Z

-+ =1 5.10
2t (5.10)
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Differentiating this equation with respect pajives

dz pb?

Since the normal and tangent are perpendicular the product of their gradientsaisd
therefore the gradient of the normal is

-1 2
tanqbz—(ClZ) :Za2 __Z ~ (5.12)
dp pb p(1 —e%)
SubstitutingZ = p(1 — €?) tan ¢ in (5.10) gives
P11+ (1 —e?)tan? ¢] = a®. (5.13)
Thus the required parameterisation is;
acos ¢
PN = = , 5.14
PO) = T A (5.14)
a(l — e?)sin ¢
PM =Z(¢) = . 5.15
(@) [1 — e2sin® ¢]/2 ( )
SinceCP = PN sec ¢ = psec ¢ we have
a
CP = = 5.16
V((b) [1 - 62 Sin2 ¢]1/2 ( )
in terms of which
p(¢) = v(¢) cos o, (5.17)
Z($) = (1 — €%) v(e) sin ¢. (5.18)
The triangle OCE
Later we shall require the sides of the triangi€®©CFE
defined by the normal and its intercepts on the axes. z
P(p,Z
OE =OM — EM =p— Zcot ¢ N— (°2)
= vcos¢ — (1 — e?)vcos ¢ Ol E/ z
T
= ve? cos ¢. . o M P
— 02 CP=v(¢)
CE =ve Figure 5.2
OC = ve? sin ¢. (5.19)

The sides of this small triangle are all of order’; for example at latitude-45° the sides
OF andOC are about 30km an@'E is about 42.5km.
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The relation betweeng and ¢

From Figure 5.1b and equations (5.17) and (5.18) we immediately obtain the relation be-
tween¢ ando.:

tan ¢, = i = (1 —€®)tan ¢. (5.20)

Clearly ¢ and ¢, are equal only at the equataef,= 0, or at the polesp = 7/2. Since
e? = 0.0067 the differencep — ¢, at any other angle is small (and positive). It is a simple
exercise in calculus to find the position and magnitude of the maximum difference. First

write 5 5 ) 5
tan ¢ — tan @, _ e“tan
tan(¢ — ¢c) = Il +tangtang. 1+ (1 —e?)tan?¢’ (5.21)

Differentiating with respect te gives
(p—¢c)  €’sec® p[1 — (1 —€?) tan® ¢]

9 d
— e - : 5.22
sec?(9— 60) = Tt (1= o] (5.22)

Thereforep — ¢. has a turning point, clearly a maximum, when the right hand side vanishes
attan ¢ = 1/+/1 — e2. Using the value o¢ for the Airy ellipsoid (equation 5.4) shows that
the maximum difference occurs at~ 45°.095, for which ¢. ~ 44°.904 and the latitude
differencep—¢. ~ 11.5'. (Note thate? ~ 0.00667 is the radian measure of 22.9

A comment on other latitudes

In addition to the geodetic latitudeand geocentric latitude., we have already discussed

the isometric latitude) (Section 2.4) and we shall meet three further latitude definitions:
the reduced (or parametric) latitude(Section 5.5), the rectifying latitude (Section 5.9)

and the conformal latitud® (Section 6.5). With the exception of the isometric latitude all

of these latitudes coincide with the geodetic and geocentric latitudes at the poles and on the
equator and the maximum deviations fr@rmare no more than a few minutes of arc. The
isometric latitude agrees with the others at the equator only but diverges to infinity at the
poles: itis a radically different in character.

5.4 Cartesian and geographic coordinates

Using (5.17) and (5.18) the Cartesian coordinates of a point on the surface are

X (¢) = p(¢) cos A = v(¢) cos ¢ cos A, (5.23)
Y (¢) = p(¢)sin A = v(¢) cos psin A, (5.24)
Z(¢) = (1 — €*)v(¢) sin . (5.25)

For givenX, Y, Z the inverse relations fap and\ are clearly

(@) A= arctan G;) . (b) ¢=arctan <(1 — 5W> . (5.26)
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Now consider a poinf{ at a heighth on the normal to the

surface at the poinP with geographical coordinatesand . Z h H
The distance of this point from the axis is n@gw- h cos ¢. P <0
Also, from (5.20), we havé&fP = CP — CE = v(1 —¢?). N D
The coordinates off are 7
(0] E A
X(¢) = (v(¢) + h) cos ¢ cos A, (5.27) / & M p
Y (¢) = (v(¢) + h) cos ¢sin A, (5.28) CP=v(0)

Z(¢) = (1 — e*)v(¢) + h) sin ¢. (5.29) _
Figure 5.3

For the inverse relations dividing equation (5.28) by (5.27) givexplicitly, as in equa-
tion (5.26a). To findp andh we can eliminate\ from (5.27) and (5.28) and rewrite equa-
tion (5.29) forZ to give

VX24+Y?2= (v(¢)+h)cos o, (5.30)

Z + e*v(¢)sing = (Z/(gb) + h) sin ¢. (5.31)
Dividing these equations gives an implicit equationdor

Z + e*v(¢) sin ¢
JXetve

There is no closed solution to this equation but we can develop a numerical solution by
considering the followindixed point iteration:

¢ = arctan (5.32)

Z + €2v(py,) sin ¢

VX2 +Y?

¢n+t1 = g(¢n) = arctan , n=20,1,2....

(5.33)

Now in most applications we will have < a so that a suitable starting approximation is
the value ofp obtained by using thé = 0 solution, equation (5.26b):

Z

= arctan . 5.34
%0 [u - ewm] 534

If the iteration scheme converges so that ; — ¢* ande, — ¢™ in (5.33) thenp™ must

be the required solution of equation (5.32). The condition for convergence of this fixed

point iteration is thatg’(¢)| < 1: this is true here since’(¢) = O(e?). Once we have

found¢ it is trivial to deduceh from equation (5.30):

h=secp/X?+Y? —v(p). (5.35)

Comment: The formulae of this section are presented without proof in the OSGB web
publication mentioned in the Bibliography. We do not use them elsewhere but the method
of iteration to a fixed point is important and we will apply it in several places.
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5.5 Parameterisation by reduced latitude

There is another important and obvious parameterisa-
tion of the ellipse. Construct theuxiliary circle of the B!
ellipse: itis concentric and touches the ellipse at the ends B
of its major axis so that the radius is equaldo Take
a point P on the ellipse and project its ordinate until it
meets the auxiliary circle g’ and let angle®”’O A beU.
The angldJ is called theeduced latitude (or parametric
latitude) of the pointP on the ellipse.

P!

o
c
o

The pointsP and P’ clearly have the same abscissa,
p = acos U. Substituting this abscissa into the equation
of the ellipse (5.10) we have Figure 5.4

Z =b\/1—p*a?=0bsinU. (5.36)
The pair of equations
p=acosU, Z =bsinU, (5.37)

constitutes the required parametric representation of the ellipse. It is clear that that the
ellipse is related to the auxiliary circle by scaling in thelirection by a factor 0b/a.

Relations between the reduced and geodetic latitudes

Comparing the parameterisationspadind Z in equations (5.17,5.18) and (5.37) gives
p=v(p) cosd =acosU,
Z = (1—€?)v(¢) sing = bsinU.

The basic relation betwedi and¢ could be taken as

acosU = v(¢) cos ¢, (5.38)

but it is more useful to divide the expressions foandp to find (usingb = av/'1 — €2)

CtanU = VI_ P tang | 5,39
It will also be useful to have an expression fom terms ofU. Using (5.38) and (5.16)
2.2 2 9
1—e?cos’U =1-— icos2(j>: 1— Ls.qbz
a? 1 — e?sin®¢
1 _ 2
et (5.40)
1 —e2sin“g
so that
V= a _ a [1 _ g2 cosZU] 1/2 (5.41)

[1 —e2 Singgi)] 12 1—e?
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We shall need the derivative 6f with respect tap. Differentiating (5.39) gives

1
seczUﬂ =1 —e2sec?p=+/1—¢2 |1+ tan’U | . (5.42)

dp 1—e2
dUu B 1 — €2 cos?U 5 43
B i (5.43)

The difference between reduced and geodetic latitudes

We could use the above derivatives to find the maximum difference betiWemard ¢ but

the result follows by simply comparing equations (5.20) and (5.39). They differ only in that
the factor of(1 — e2) in (5.20) is replaced by/1 — e2. Since the maximum value g@f- ¢,
occurred whenan ¢ = 1/v/1 — e? we deduce that the maximum value®f U will occur
whentan ¢ = 1/+/1 — e2. This corresponds t¢ ~ 45°.048 for which the corresponding
value ofU is 44°.952 so that the maximum differenceds— U ~ 5'.7.

5.6 The curvature of the ellipsoid

We now investigate the properties of the two dimensional curves formed by the intersection
of some, but not all, planes with the surface of the ellipsoid: we use the mathematical results
established in Appendix A. In particular we investigate two special families of planes.
The first family (S) has the normal d@ as a common axis and the intersections of its
planes with the surface are called th@rmal sectionsat P. One member of the family is

S .
meridian / ;/ view from S view from T

prime
vertical

prime E P
vertical ‘7
meridian C A
plane [prime

vertical

Figure 5.5

the meridian plane (black) containing and the symmetry axis of the ellipsoid. Another
important member of the family is the plane at right angles to the meridian plane: itis called
the prime vertical plane (shaded grey). Other members of the family are labelled by the
anglea between a specific plane and the meridian plane.

The second family of planes (T) has as its axis the tangent to the parallel cireienat
are interested in just two of its planes. One (black) is the plane of the parallel: its section
on the surface is the parallel circle. The other is that which contains the noriRatlais is
the prime vertical plane (grey), the only plane common to both families.
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Radius of curvature in the meridian plane

The section by the meridian plane is an ellipse whose curvature may be determined from
either Cartesian equations or parameterised equations by the well known formulae sum-
marised in Appendix A. The easiest method is to use the parameterisation in terms of the
reduced latitude given in (5.36). This has been done as an example in Appendix A: equa-
tion (A.12) gives thaneridian curvature as

1 V1 —e?

S . 5.44
" a[l —e2cos? UJ3/2 (5.44)

It will be more useful to work with theneridian radius of curvature defined byp = 1/x
and expressed as a functiong@fUsing equation (5.41) we have

o(g) = — 21 _,62) 37 (5.45)
(1 —e2sin? ¢)
Using (5.16) we have the following relation betweeandv:
V3 2
pzﬁ(l—e). (5.46)
Furthermore, we have
P 1—e? (5.47)

v 1 —e2sin? ¢’
Since (a) the denominator is less than or equal to 1 and (b) the numerator is less than or
equal to the denominator, we have

1-eAv<p<w. (5.48)

Now in Figure 5.2 we hav€’P = v andEP = CP — CE = (1 — ¢*)v. Therefore the
centre of curvature of the meridian is at a paihbetweerC' andE, as shown in Figure 5.5.

Radius of curvature in the prime vertical plane

To find the radius of curvature in the prime vertical we consider two planes of the family

the prime vertical itself (grey) and the parallel plane (black). The radii of curvature in these
two planes are related by Meusnier’s theorem (Appendix A). This theorem relates the radius
of curvature in a normal section to that made by a plane at an oblique @angle

Rnormal = sec ¢) Roblique (549)

We identify the prime vertical plane and parallel plane of the faffilyith the normal and
oblique planes of the theorem. Now the parallel plane intersects the surface in a parallel
circle so we know that its radius of curvature is simply®? = p(¢) in Figure 5.2. But this

is justr(¢) cos ¢ and therefore

Rprime vertical = S€C ¢ Rparallel = sec ¢ p(¢) = V(¢) (550)
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Thus we have the important result that the distafid®@ = v(¢) may be identified as the
radius of curvature of the normal section made by the prime vertical plane. The(oint
where the normal meets the axis is the centre of curvature of this section.

Radius of curvature along a general azimuth

Returning to S, the family of planes on the normal, we now know the curvature of two
of the normal sectionsp—! on the meridian plane and~! on the prime vertical. Now
consider the curvaturds («), of the section made by that plane of the family at an angle
measured clockwise from the meridian plane. Clearly the symmetry of the ellipsoid about
any meridian plane implies th&f (—«) = K («) so thatK («) is a symmetric function of

and it must therefore have a turning pointat= 0. Therefore the curvature of the meridian
section must be either a minimum or maximum and it is therefore one of the principal
curvatures aP—see Appendix A.

In the appendix we proved that the planes containing the principal curvatures are or-
thogonal. Therefore the curvature of the normal section made by the prime vertical plane
must be the other principal curvature. Furthermore, equation (5.47) giveésr and
thereforep—1 > v~ ! so that the curvature in the meridian section is the maximum normal
section curvature at any point. Introducing the radius of curvature on the general section by
R(a) = 1/K(«a), we use Euler’s formula, equation (A.36), to deduce that

1 1 1
m = ; COS2 o+ ; SiI].2 Q. (551)

Curvatures and their derivatives. The parameter3

In addition to the principal curvaturesande it is useful to introduce a special notation for
their quotients = v/p:
3

9= :in2¢)1/2’ po) =5 (1-¢2), (5.52)
B(¢) = % ! 1{? ¢ 1= ej‘fsjf. (5.53)

We shall frequently require the derivatives of the curvatures and their quotient. Itis straight-
forward to show that

dv @_

_ (8-1)
%_(B_l)ptanqba d¢_

3 3 ptan ¢, d—ﬁ—

do

—2(6 — 1) tan ¢.
(5.54)
We need both first and second derivativer-oh the combinations

1dv (B—1)tang 1dv (B-1) 1
Vi~ 5 0 v §

23% — 58 + 3) tan®¢. (5.55)
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Finally we note that the cross-section coordinates (5.17, 5.18) and their derivatives are

p(6) =v(d) coss,  Z(6) = (1— %) (o) sino, (5.56)
Z(]; = —psin ¢, CZ = pCos . (5.57)

Spherical limit
We shall refer to the limit — 0 as the spherical limit. Clearly in this limit

v—a, p—a, B-1 0 Vo8 =0 (5.58)

5.7 Distances on the ellipsoid

Derivation of the metric
Starting from the parameterisation of the Cartesian coordinates (Section 5.4):

X(¢) = p(¢) cos A = v(¢p) cos ¢ cos A,

Y (¢) = p(¢) sin A = v(¢) cos psin A,

Z(¢) = (1 — €?)v(¢) sin ¢. (5.59)
we have

d
dX =pcosAd¢ — psin Ad)\, whereDOT = %
dY =psin Ad¢p + pcos AdA,
dZ = Z dé. (5.60)

The metric may be written as
ds* = dX?* 4+ dY? + dZ?,
= (p* + Z%)d¢? + p*dN\%.
Using (5.57) and (5.56) we obtain two useful forms:

ds® = p? dp? + p*d\?, (5.61)
ds® = p? d¢?® + v? cos’p d)\>. (5.62)

On the meridian we hawé\ = 0 and on the parallel circle we hade = 0 Therefore

dSmeridian = Pd¢7 (563)
dSparallel = v cOS ¢ dA. (5.64)
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The infinitesimal element on the ellipsoid

The infinitesimal element on the sphere was discussed in Section 2.1 and the same consid-
erations apply on the ellipse. In particular the infinitesimal element may be approximated
by a planar rectangular quadrilateral to which we can apply plane trigonometry. Equa-
tions (5.63) and (5.64) show that the sides are equaldtd on the meridians and cos ¢

()
K Q ¢+00
Os
o pdo
P| vcosh oA |M ¢
A A+
Figure 5.6

on a parallel. The metric (5.62) may be viewed as the application of Pythagoras to the
infinitesimal element. The azimuth of an arbitrary displacement is calculated from

l/cosqb@
p do

(5.65)

tana =

Finite distances on the ellipsoid

In general the integration of the metric to find the distance between arbitrary points is non-
trivial. The whole of Chapter 11 is devoted to this topic, concluding with the Vincenty
series for the geodesic distance. Here we consider only the trivial case of integration along
a parallel and the non-trivial case of integration on the meridian where we obtain an elliptic
integral. From equations (5.63) and (5.64) we have

)\2 >\2
Sparallel = / A el = / u($) cos ddA = v(B) cosd (A2 — A1), (5.66)
A1 A

1

¢2 ¢2 ) $2 dé
Smeridian = / dsmeridian = / P(¢)d¢ = CL(l —€ ) / 9 5 3/2° (567)
1 1 1 (1 — e”sin qf))

5.8 The meridian distance on the ellipsoid

On the sphere we defined the meridian distan¢e) as the distance along a meridian from
the equator to a point at latitude this was triviallym(¢) = a¢. On the ellipsoid we use
the same notation but the definition follows from equation (5.67):

¢ o] ¢ do
= s 1s = = — 2
m((Z)) = /0 dSmeridian /0 p(¢)d¢ CL(l € ) /(; (1 _ 62 Sin2 ¢) 32" (568)
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Series expansion for meridian distance: method |

The above (elliptic) integral cannot be evaluated in closed form but, siee0.007, we
expand the denominator as a series and integrate term by term. Settingh ¢ we have

¢
m(¢) = a(l - €?) / (1+ boe?s? + byets* + bgebsS + bgeBs® + - -) dp,  (5.69)
0

where, from (E.30),

15 35 315

3
by = = by = — bg = — = 5.70
2 9’ 4 ]’ 6 16’ 3 128 ( )

Using the trigonometric identities (C.32) to (C.38) we can expressitfte, . ..sin%¢ in
termscos 2¢, . .. cos 8¢. Collecting terms with the same cosine factors and integrating will
then give a series starting withgaterm and followed by terms igin 2¢, . ..sin8¢. The
resultis:

m(¢p) = App + Agsin2¢ + Agsind¢ + Agsin6¢ + Agsin8¢ + - - -, (5.71)

where the coefficients are given by

bae?  3bset bbgeb  35bged ez 3¢t 5eb 17568
Ap = a(l—€?) (1 —al1-52— 0¢ _0¢
0= e)<+ 5 T8 16 128 4 64 256 16%1024

A a(l—eQ)( bae?  bye*  15bgeb 7bge8> ( 3e2 3e* 458 42068>
9 = — — — — = _—_—

2 2 2 32 16 ) 8 32 1024 16x1024
a(1—e?) <b4e4 3bge’ 7b868> <15e4 45¢° 52568)
A4: =a y

4 8 + 16 + 32 256+1024+16*1024

A _a(l—€?) _b666_b868 . _3566_ 17568
67 7% 32 16 ) 3072 12%1024 )’

a(1—e?) [ bge® 315€®
Ag= L)) (22¢ ) 5.72
8 8 (128 “\ 128+1024 (®.72)

If we use the numerical values for the Airy ellipsoid (5.4), then, in metres,

m(¢) = 6336914-609¢ — 15979-859 sin 2¢+ 16-711 sin 4¢ — 0-022 sin 6¢+0-00003 sin 8¢
(5.73)
The first four terms have been rounded to the nearest millimetre whilst the last term shows
that theO(e®) terms give rise to sub-millimetre corrections. We shall therefore drag)
terms in expressions for the meridian distance .

The distance from equator to pole is defined by

1
mp, = m(n/2) = g Ay = 10001126-081 metres (5.74)
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Series expansion for meridian distance: method Il

There are other ways of obtaining a series expansion. For example, the OSGB publication
uses an expansion in terms of the parametdfrom the relations between b, e, n given
in Section 5.2 we can write the meridian distance as

d¢
(1 4+ 2ncos2¢ +n

o]
m(®) = b1 —n)(1 + n)2/0 (5.75)

2)3/2 ’

The integral is then evaluated by a change of variablez setxp(2i¢) for which we have
dz = 2izd¢ andz + z~! = 2 cos 2¢. The integrand becomes, @(n?),

~3/2
(1 + 2n cos 2¢ + n2>

=(1+n2)"Y2(1+ nz_l)_3/2

= (1 +ainz + a2n222 + a3n323+) (1 + alnz_l + a2n2

272+ a3n32_3)
1 1 1

= 1+a%n2+(a1n+a1a2n3) 24- | +agn? | 22+ | +asn? |2+ —|—O(n4)
z 22 23

where the coefficients are given by (E.30):

3 15 35
a2=--, a3=

— - —. 5.76
2’ 8 16 ( )

al1=— —
Apart from the overall constant multiplier the integral becomes) ta?),

Zd 1 1 1
/ il (1 + ain® + (ain+arasn®) [z + } + agn® [z2+2} + agn® [z3+3]>
1 21z z z z

=5 ((1+a1n ) In 2+ (a1n+ajasn®) [z—z] = ||t |

Now the contributions from the lower limit all vanish and at the upper limit we have=
In (exp(2i¢)) = 2i¢ andz — 2! = 2isin 2¢ etc. Therefore the final result is

z

1

m(¢) = Bo¢ + Basin2¢ + Bysin4¢ + Bgsinbp + - - -, (5.77)

where the coefficients are given to orderby

By = b(1 —n)(1+4n)? <1 - Zn2) = b

(
Bgzb(l—n)(1+n)2< = (
By =b(1—n)(1+n)? <15”2> = b <15n2 + 15n3> :
( (

35n3
_n> _

Bg = b(1 — n)(1+n)? 35n3> . (5.78)
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It is straightforward to show that these coefficients are exactly the same as those obtained
in Method I. Simply substitute in thd,, with expressions foe? etc.obtained from (5.9).
(Ignoring terms ofD(e?)). Therefore we can write

1 1
my =m(n/2) = 57&40 = §7rB0 (5.79)

The truncated meridian distance

The results we have just obtained measure the meridian distance from the equator. In prac-
tice we often requiré\m, the distance from a reference latitugle Using the second form
of the series we find

Am = m(¢) —m(do)
= By(¢p—0o) + Ba(sin 2¢— sin 2¢g) + By (sin 4¢— sin 4d¢g) + Bg(sin 6¢— sin 6¢y)

= Bo(¢ — ¢o) + 2Basin(¢ — ¢p) cos(p + ¢o) + 2By sin 2(p—g) cos 2(p+dg)
+ 2Bg sin 3(d—do) cos 3(p+eo) + - - - . (5.80)

with the coefficients given by equation (5.78).

5.9 Inverse meridian distance

When we derived the inverse series for TMS in Chapter 3 we expressed the coefficients
in terms of the footpoint latitude; which was defined byng,,(¢1) = a¢1 = y for a

given point(z, y) on the projection. Triviallyp; = y/a. We will have to do the same for

the ellipsoid but now we are faced with inverting the series (5.71). There are two methods
to choose from. The first is a numerical solution by a fixed point iteration, the second is to
apply the Lagrange method to a series for a function closely related to the meridian distance,
the rectifying latitude.

Inverse meridian distance by numerical methods

To solvem(¢) = y whenm(¢) is given by (5.71) or (5.77) we consider the iteration

nt1 = 9(én) :qbn—W‘L)_y), n=0,1,2..., (5.81)

where the initial value is that for the spherical approximation: namgly= y/a. Now if
the iteration scheme converges so that; — ¢* and¢,, — ¢™ then (5.81) becomes

(m(9¥) ~y)

a

¢* =g(¢") =" ~ (5.82)

so thatm(¢*) — y = 0 and¢™ is the required solution for the footpoint. Note that since
g (¢) =1 — Bg/a = O(e?) < 1 the iteration will indeed converge.
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Inverse by way of the rectifying latitude and Lagrange series expansion

Therectifying latitude is simply a scaled version of the meridian distance. Using (5.79),

W) = gmngf) = mﬁ) = m]éf) (5.83)

wherem,, = m(w/2) is the distance from equator to pole given by (5.71) or (5.77): the
constantsd, and By are given by (5.78) or (5.77) respectively. The rectifying latitude may

be used to construct projections from the ellipsoid to the sphere which preserve the meridian
distance but here we use it simply as a parameter which facilitates the series inversion. We
choose to use the expansioninequation (5.77).

() (¢) = & + basin2¢ + by sin4d¢p + bgsin6¢p + - - - (5.84)

= Bi()m
whereby = Bs/By, by = B,/ By etc. The coefficients are to be calculated®gn?) from
equations (5.78):
5 5
set e=n+ ZnQ + Zn?’,
Bil=b 1+ '=bt1l—eted -+

1 1
:bfl(l—n—fn2+fn3+~->

4 4
3 3 21 3 9 .
bgz—b351(§n+§n2+l—6n3+---> :—§n+En5+~--,
15 15 15
35 35
be = —ngl(@n%..-) — -t (5.85)

Finally, we invert equation (5.84) by the Lagrange expansion of Appendix B, Section B.5:

¢ =p~+ Dysin2u+ Dysindp + Dgsinbu + - - -, ,u:g, (5.86)
0
where, t %),
o Dy = —by — byb +1b3 —§n—§n3
2 — 2 204 2 2 — 2 32 )
21
Dy = —by + b3 = En2,
3 151
Dg = —bg + 3boby — §b§ = %n?’. (5.87)

This completes the derivation of a series for the inverse meridian distance. Note that the
definition of the rectifying latitude is such that it is zero on the equatoraf2dat the pole.
From the first term of the above series we see that the maximutnpfmust occur when
¢ =~ p ~ 45° and it will be of a magnitude given b5, approximatelyd’.
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5.10 Ellipsoid: summary

Equation: ellipsoid and cross-section

X2 Y2 ZQ p2 ZQ
Parameters
2 2 2 a—b 2 2
b_a(l_e)v f= a e"=2f—f", (589)
2 2 2
p_a"—b" e __a-—b
=@ T el_n_a—l—b' (5.90)
Airy ellipsoid
a = 6377563.396m, e = 0.081673372415, f =0.03340850522,
1
b = 6356256.910m, e? = 0.006670539762, ? = 299.3249753. (5.91)
Cartesian coordinates
X(¢) = p(¢)cos X = v(¢) cos ¢ cos A,
Y (¢) = p(¢)sin A = v(¢) cospsin A,
Z(¢) = (1 — €®)v(¢) sin ¢. (5.92)
Coordinate derivatives
dp . dz
7 —psin ¢, e p COS ¢. (5.93)
Radii of curvature and their ratio 3
3 2 2
a 9 v 1—e*sin“¢g
f—y = —= 1 — - — =
I/(d)) [1—62Sin2¢]1/27 p(gb) 0/2 ( € )7 /8(¢) p 1—62
(5.94)
Curvature derivatives
dv dp _ ,(B-1) dg
— = (f —1)ptan ¢, — =3 tan ¢, — = =2(8 —1)tan ¢.
5= (- Dptans,  TE=3T Zptns, g0 =25~ 1tano
(5.95)
Metric
ds* = p? d¢?® + v? cos’p d)\2. (5.96)

/continued
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Meridian distance

m(¢p) = App + Agsin2¢ + Agsinde¢ + Agsinbo + - - -, (5.97)
= By¢ + Bosin2¢ + Bysind¢ + Bgsinbg + - - -, (5.98)
Rectifying latitude
T m(¢)

= — . 5.99
we) =5 ", (5.99)

Inverse meridian distance
¢ =+ Dysin2u + Dysindp + Dgsin6bp + - - - . (5.100)

In the above series thé&,,, B,, andD,, coefficients are given by (5.72), (5.78) and (5.87).
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Chapter

Normal Mercator on the ellipsoid (NME)

Abstract

Derivation by analogy with NMS. Inversion of the projection by (a) numerical
methods and (b) Taylor series expansion. A digression on double projections
through a sphere. The conformal latitude and the application of its series ex-
pansion to the inversion problem.

6.1 Normal cylindrical projections on the ellipsoid

The normal Mercator projection on the ellipsoid (NME) is a straightforward generalisation
of the normal projection on the sphere (NMS) that we discussed in Chapter 2. Itis of course
a more accurate projection, the differences between NME and NMS being ofc3rder
0.0067. We are not so much interested in NME in itself, but rather as a step on the way to
TME, the transverse Mercator projection on the ellipsoid.

NME has the same advantages and disadvantages as NMS. It is constructed to be con-
formal, preserving angles exactly and mapping rhumb lines on the ellipsoid map into lines
of constant bearing on the map. Once again conformality guarantees that the scale at any
point is isotropic (independent of direction) so that the projection is locally orthomorphic.
As in NMS, the scale does vary with latitude, being exact on the equator and reasonably
accurate only within a fairly narrow band centred on the equator. The extent of this region
of high accuracy may be increased by modifying the projection so that the scale is exact on
a pair of parallels at-¢,. The projection is very distorted at high latitudes and nowhere
preserves area.

Before investigating the details of NME we consider an arbitrary normal cylindrical
projection on the ellipsoid defined by the equations

A, (6.1)
f(9). (6.2)
The geometry of the projection may be illustrated by Figure 2.4 with only one change,
the normal atP no longer passes through the centre in general. The meridians on the

ellipsoid are projected into lines parallel to tir@xis on the projection and parallel circles
are projected into lines parallel to theaxis. The meridian spacing is equal but the spacing

a
a
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of the projected parallels will of course depend on the nature of the fungtioh Note

that the orthogonal intersections of meridians and parallels on the graticule are transformed
into orthogonal intersections on the map but thinasnecessarily true for intersections at

an arbitrary angle.

The essential difference is that the metric on the ellipsoid is given by (5.62):
ds? = p? d¢* + 12 cos®p d)N?, (6.3)

wherev(¢) andp(¢) are defined by equations (5.16) (5.45) respectively. The corresponding
infinitesimal elements on the ellipsoid and the plane of projection are shown in Figure 6.1.

(@ (b)

LS Q 150 K Q sy
o ds p 8(]) B 0s! 6}’
o
P| vcospdr |M P 5% A
A A+OA X x+0x

Figure 6.1

Transformation of azimuth to grid bearing
The geometry of the infinitesimal elements gives

_ VCospOA _(Lx_ adA
(@) tana = Y7 and (b) tanpg = 5y " af(0) (6.4)
so that
tan g = 5;?(05 tan a. (6.5)
If the projection is conformal, that is = (3, we must have
o) = A0 (6.6)

We defer the integration to the next section.
The point scale factor

If we denote the distanceBQ and P'Q’ by §s andds’ respectively, the square of the
point scale factor is

5 .. 087 522 + dy?

= lim — = li . 6.7
F= ot s ~ op P2 092 + V2 cos?p ON? (6.7)

On PQ andP'Q’ equations (6.4) givép = (v/p) cot v cos ¢ 6\ anddy= cot 3 dx. There-

fore we have
9 ) §2%(1 + cot?3)

=1 .
o= b 12 cos2¢p dA2(cot?ar + 1)

(6.8)
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Sincez = a this reduces to

(6.9)

o(6) = asec ¢ [sina}

v(¢) |sing
where we assume thathas been found in terms afand¢ from equation (6.5). Clearly if
the projection is conformal, with. = 3, we have an isotropic scale factor with

k(o) =

asec ¢
v(¢)

This scale factor differs from that on the sphere by the factar/of a difference oD (e?).
There is no simple expression fbras a function of;. Giveny we must first use one of the
methods of inversion discussed in Section 6.3 to firftom y and then we apply (6.10).

(6.10)

6.2 The Mercator parameter on the ellipsoid

The Mercator parameter (or isometric latitude) for NME will be be denoted (lgy so that
the equations of the projection are still written as

z(A, @) = al, y(A, @) = ap(¢). (6.11)

Warning. We use thesamenotation for the Mercator para
meter on both the sphere and the ellipsoid although they are
of course different functions. From this pointwill always
denote the ellipsoidal form which is derived below.

The condition that NME be conformal follows from equation (6.6) wifén) — ¢ (¢).
A p(¢)secd
d¢ v(9)
Substituting forr andp from equations (5.16) and (5.45), splitting into partial fractions and
noting that the first term simply gives the same integral as (2.26), we have

6 (1_ 2
w(gf»):/o(l )1

cos¢ 1—e2sin?¢

*r 1 e? cos ¢ 1 1
:/0 [cosgﬁ_ 2 <1+esin¢+1—esin¢>} a¢

- ¢ 7 e 1+esing
=1In [tan <2 + 4” ~ 3 [ln <1—es1n¢>] : (6.13)

The first term is just the NMS Mercator parameter for the sphere so we see that the para-
meters on sphere and ellipse differ by termgxé?). Note thaty still diverges tot-oo at
¢ = +m /2. Obviously we recover the parameter for the spherical case wher.

(6.12)
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Alternative forms

As in Section 2.4 we can rewrite the Mercator parameter for the ellipsoid in many different
forms. The most useful are (a) a simple rearrangement of (6.13), (b) likewise but with
tan(¢/2 + w/4) replaced byot(7w/4 — ¢/2) and (c) a replacement of the tangent term as
in equation (2.31):

B [ ¢ 7 1—esing ¢/2]

P(¢p) = —1In -tan (ﬂ- — </>> (1 T eSin¢>6/2- (6.15)
N i 4 2)\1-esing) |’ '
1 1+sing 1 —esing\°

¢(¢)—§ln [(1—sin¢> <1+esin¢> } (6.16)

6.3 The inverse NME transformation

Inverting the equations = a\ andy = a% to find A and is trivial but finding a value of

¢ from ¢ = y/a is anything but trivial. There is no way in which we can manipulate any
of the expressions fap(¢) to give ¢(v) in a closed form. We have to resort to one of the
following methods.

« Attempt to expand)(¢) as a series i and then invert the series by a Lagrange
expansion. (As we did fam(¢)).

« Construct an iterative scheme from which we can find a numerical valugftorany
given value ofy = y/a.

« Use a Taylor series expansionggf)). In particular we shall need an expansion about
the footpoint parametap, when we come to the transverse Mercator on the ellipse
(TME) in the next chapter.

It is clear that the first method is problematic. The range i finite, [-7/2, 7/2],
but we havey — +oo as¢ — +7/2; there is obviously no hope of obtaining a series
of the formey = ¢ + terms of ordere, €2, ... which would be amenable to inversion by
a Lagrange expansion. However, in Sections 6.4—6.6, we shall see that this is possible for
another parameter which is closely relategtdn the remainder of this section we consider
the numerical solution and the Taylor series.
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Numerical inversion by a fixed point iteration

For positive values ofy) and the corresponding it is convenient to write (6.15) as an
implicit equation

¢ = T 9arct (—) 1—esing o2 (6.17)
=3 arctan |exp 1+ esing , .
from which we construct an iteration
T 1 —esin ¢, e/
¢n+1 = 5 — 2 arctan [exp(—ib) (]_—’—eslnqbn> ] N (618)

wheren = 0,1,2... For the initial valuep, we use the spherical approximation. Setting
e = 0 in equation (6.17) we have

b0 = % — 2arctan[exp(—1)]. (6.19)

The choice of (6.15) rather than (6.14) introduces the factorxpf —¢)) which clearly
facilitates the convergence whenis large and positive. If the iteration does converge to a
valueo*, theng,, — ¢* ande, 1 — ¢™* in (6.18) so that

. 1 —esi *\ e/2
o* = g _ 2arctan [exp(—w) (%) ] . (6.20)

Thus¢™ is the required solution of (6.17).

Inverse by Taylor series

In the next chapter we shall require the Taylor serieg(af) about the footpoint parameter

Y = 1. To order(zy) — 11)* we have

d¢ n (v—=¢1)* d°¢ n (—=91)® d°¢ n (p—y1)* d'¢

dy |, 2! dy?|, 3! dy3 |, 4! dyt’
(6.21)

o) = o1 + (V—11)

where¢g, = ¢(1)1) is the footpoint latitude. The definitions of the footpoint parameter and
footpoint latitude are as given in equation (4.13) but with the meridian distance given by
that on the ellipsoid by equation (5.71) or (5.77).

Now although we do not know the functiaf(v) we do know its first derivativas a
function of ¢. Equation (6.12) gives

T = O — pg) coss = e (6:22)

where we have introduced the usual compact notation

s =sing¢ ¢ = cos ¢ t =tan¢ B=p0(@)=v/p. (6.23)
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Note that an expression fde /dv evaluated at the footpoint latitudg is exactly what we
shall need in the application of this series.
We now construct expressions for all the derivatives in the Taylor series as functions
of ¢. We need the derivative g¥(¢) given in equation (5.54) a8’ = (2 — 23)t where
t = tan ¢ (anddt/d¢ = 1 + t2).

@ _

d'l/J - ﬁc7

¢ d o d . de L,

dTDg = @[50] = %[50]@ = [50— 55] (Be)
= [(2 - 28)tc — Bs] (Bc) = t [-30% +20] ,

Po _d o, 2 do

@t o ’t [-33% + 23] o
= (Be){(—2est + (1 +17)) [-36° + 28] + *t[-68 + 2] (2 — 23)t}
= [B*(=3 + 15t%) + 52(2 — 18¢%) + B(4t?)]

dt d : d

dw‘i =i A [B3(—3 + 15t%) + B%(2 — 18%) + B(4t?)] } dz

= ¢t [B*(57—105t%) + B°(—68+180t%) + 52 (16—84t?) + B(8t)] (6.24)

These derivatives must be evaluatedatand substituted into the Taylor series which we
now write as

_ 2 _ 3 _ 4
¢—¢1 = (Y—1P1) Brcr + %ﬂw%tﬂ% + WﬁlC?D3 + wﬁl)ﬁlciltlﬂb
' ' ' (6.25)
wherej3; = v(¢1)/p(¢1), c1 = cos ¢1, t1 = tan ¢; and
Dy = —-3031 +2
D3 = [B3(=3+15t3) + B1(2 — 18t3) + 412
Dy= B3(57—105t3) + B3 (—68+180t3) + [1(16—84t%) + 8t7. (6.26)

We shall also need these coefficients in the spherical linit(0, 5 — 1):

Dy =—1

D3 = -1+ t%
Dy= 5-— t%. (6.27)
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Comment. The following three sections are a digression. \\We
shall not need any of these results in the derivation of TME. They
do, however, provide another approach to findirig).

6.4 Double projections via the sphere

Projections can be defined from the ellipsoid to any surface of ‘reasonable’ shape, not just to
the plane. Here we shall consider only the case of projections from the ellipsoid to a sphere
of radiusR. Such a projection can then be followed by one of the many known projections
from the sphere to the plane to produce a double projection with desirable properties.

If we denote the latitude and longitude coordinate on the spher@bby) then the
projection to the sphere is defined by two (well-behaved) functi@(s, \) and A(¢p, \),
where¢ and \ are the usual geodetic longitude and latitude on the ellipsoid. To complete
the double projection we define coordinatesy) on the plane by specifying a further two
functionsz(®, A) andy (P, A).

The basic properties of such a projection from the ellipsoid to the sphere can be inves-
tigated by comparing the infinitesimal elements shown in Figure 6.2.

(a) ellipsoid (b) sphere

K Q y+80 K Y p150
o 95¢¢ o RO®

P| vcospdr |M 5[ ReosdSA | ™ (0]
A A+OA A A+OA

Figure 6.2
The geometry of the infinitesimal elements gives
oA Rcos® oA
(a) tana = VCZS(;; and (b) tana’ = %. (6.28)

Restricted projections to the sphere

The restricted projections are those in whith= A and® is a function of¢ only. In this
case the relation betweenanda’ then becomes

tana’ = cos® _p t
d'(p) veosp

It is straightforward to calculate the scale factor for any azimuth but we shall consider only
the scale factor on the meridian of the sphere; denoting thig(by, as in Section 2.2, we

ana. (6.29)
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have

_ R6D  RI'(¢)
Copde p
Note that we have not specified how the radiuis to be chosen. There are many possible

choices which, whilst not affecting the angle transformations, will of course influence the
scale factor. All of the following have been used for

h(¢)

(6.30)

« The semi-major axis.

« An arithmetic or geometric mean of the semi-axes.

« The meridian radius of curvaturg, at a latitude where we seek the best fit.

» The Gaussian radius of curvatuggpr, at a latitude where we seek the best fit.

« R such that the ellipsoid and sphere have the same volume.

R such that the ellipsoid and sphere have the same surface area.

« R such that the ellipsoid and sphere have the same equator—pole distance.

A conformal projection to the sphere: the conformal latitude

The function of®(¢) which generates a conformal restricted projection to the sphere is
called theconformal latitude, for which we use the notatiog(¢) (in agreement with
Snyder—see Bibliography). There are many other nomenclatures in the literature. Beware
also that many older books apply ‘conformal latitude’ to that function @fhich we have
already defined as the Mercator parameter.

Equation (6.29) shows that the projection is conformal, thatig/, if ® = y satisfies
the condition

p(p)sec ¢

secx X'(¢) = &) (6.31)
which integrates to ” 5 p(o)
x (Y p(g)secd
/0 secydy = /0 7}/(@ do. (6.32)

The integral on the left is the same as that for the Mercator parameter on the sphere, equa-
tion (2.26), whilst the integral on the right is that which gives the Mercator parameter on
the ellipse, equation (6.13). Therefore

™ s — esin e/2
In [tan <X(2¢) + 4>] =In [tan (? + 4> <1+esmz> ] = Y(¢), (6.33)

B ¢ 7 1—esing e/2 T
X(¢) = 2arctan [tan (2 + 4> <1+esm¢> ] — 3 (6.34)
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This rather complicated transformation (along with= \) has been constructed to guaran-
tee a conformal projection from ellipsoid to sphere. But note that equations (6.30) and (6.31)
clearly show that the scale cannot be uniform on any meridian of the sphere. Therefore fol-
lowing this projection with TMS from sphere to plane will produce a conformal projection
of the ellipsoid to the plane but with a non-uniform scale on the central meridian. When we
meet TME (next Chapter) we shall find that it is a conformal projection of the ellipsoid to
the plane with a uniform scale on the central meridian.

A rectifying projection from ellipse to the sphere

As a second example of a projection to the sphere consider that defined by $etjitig),
whereu(¢) is the rectifying latitude defined in Section 5.9, equation (5.83):

_mm(¢)

_2mp

®(¢) = p(9) (6.35)

wherem, = m(x/2) is the meridian distance between equator and pole on the ellipsoid.
The corresponding distance on the spheiferj) R and the two are clearly equal if we set

R = 2m,/x. In terms of the notation developed in Section 5.8 we have Ay = By So

that we haver > R > b as expected.

The scale factor on the meridian is then
_ RY'(¢) R mm'(9)
P p 2 my

h =1, (6.36)

sincem’(¢) = p from equation (5.68). Thus this projection to the sphere conserves the
scale factor and total length on every meridian but on the other hand it is not a conformal
projection sincg.(¢) andx(¢) are different functions.

6.5 A series expansion for the conformal latitude

Equation (6.34) shows thatand¢ are equal at the equator and at the pole and elsewhere
they differ byO(e) terms, (actually byD(e?) as we shall see), so there is every reason to
expect them to be related by a series which can be inverted by the Lagrange method. In this
section we will find coefficients such that

X(@) = ¢ + by sin 2¢ + by sin 4¢ + bg sin 6¢ + bg sin8¢p + - - - | (6.37)
d(x) = x + dasin2x + dysindy + dgsin 6y + dgsin8y + - - - . (6.38)

To develop the direct series fqi(¢) we first introduce two new (small) parametess,
andn, such that

<1—esinq§

e/2
l—i—esin(b) =expA=1+n. (6.39)
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Taking logarithms

e 1 —esing e 1—es
A= —-In[—)==-In .
2 1+ esing 2 1+es
Using the series (E.12) we obtaihand its powers to ordeD(e®):

1 1 1
A = —é%s [1 + §€282 + 56454 + 76656] ,

2 23
A2 — A2 |1 4 2242 4 224
e’s +3es+45es ,

A3 = —ebg3 [1+ 6232] ,
A4 - 6854.
Therefore "7:eXpA—1:A+%A2+%A3+%A4+...
= poe? + pye* + pee® + pged + - -+ |
i = paet + 2papac® + (03 + 2pops)e® + -,
n® = p3eS + 3pdpae® + - -,

nt=pae® oo

where p2=—s
pa= (s7/6)(3 - 2s),
ps = —(s3/30)(5 — 105 + 652),
ps = (s1/2520)(105 — 4205 + 6445% — 360s>).

We now introduce the abbreviation, (and use equation 2.29),

_ ¢, TN _ 1
b—tan<2+4> —sec¢+tan¢>—c(1+s),

and note for future reference that
b tan(¢/2+7/4) 1 | T
L+b2  sec?(¢/2+7/4) 2 S (¢ * 2)
With this notation equation (6.34) becomes

% + Z = arctan[b(1 +n)] = arctan(b+ nb).

For the inverse tangent we use the series (E.9) withnb. Therefore

m_¢, m m 1 ~(nb)* 20
42 4 11402 2 (1+02)2

1
= §COS¢: g

(nb)3 -2 N 8b? ()t [ 240 483
3 [(1+02)2 " (1+02)3 4!

(T+627  (1+ 02

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

_i_...’
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Substitute first for the powers /(1 + b%)] from equation (6.43) and then substitute for
the remaining powers dffrom equation (6.42). The result is

¢ c c
X=¢+cn— 5(1 +5)n? + 6(1 + 35+ 252 — Z(S +252 4+ st +... . (6.46)

Substitute for the powers gfin terms of thep-coefficients (equation 6.40) and then substi-
tute for thep-coefficients using equation 6.41. This gives a series of the form

X =0+ qe? + quet + qee® + gz + - -, (6.47)

where the coefficients are given by

q2 = Cp2 = —SC,
_ _ %1 0™ _ 2. 0.3
G4 = Cp4 2( + 5)(p3) = 0.s%c 55 ¢
c c 1 13
g6 = Cpg — 5(1 + 5)(2papa) + 6(1 + 35 + 25%)(p3) = gs?’c—i— 0.s%c — Bs‘r’c,
(& C c P
as = eps — 5 (1+ ) (Pd + 2papo) + 5 (1+ 35 + 25%) (3pipa) — (s + 25" + 57) (p2)
9 1237
4 5 6 7
— 0. = s8¢ — . 4
Osc+24sc—|-030 1260° © (6.48)

Note the cancellation of all the terms involvingc, s‘c andsSc. This suggests that there
must be a smarter way of carrying out this expansion. Finally, using the identities for
sc, s3¢, s9¢, s'c given in Appendix C, equations (C.36jc.

X = ¢+ basin2¢ 4 bysinde + bgsin6¢ + bgsin8¢p + - - - (6.49)

where 9

T TR
b4: %4_77664_697684_...
48 T80 1520
%:_Eé_%mﬂﬂu
480 1340
8
bs = izf;§o+ (6.50)

The leading correction terifb,) gives a maximum value of — ¢ ~ 12" at¢ ~ 45°.

The inverse series

The inverse of the above series fprmay be calculated as a Lagrange expansion as in
Appendix B, equation (B.17). The result is

¢ = x+dosin2y + dgsindy + dgsin 6y + dgsin8y + - - - (6.51)




6.12 Chapter 6. Normal Mercator on the ellipsoid (NME)

where

1 e2 Het b 13e8
dy = —by — boby + b3 =4+ 4
2 2~ 02044 5% 5 T T2 T 360 T
_7et 29¢5  811e®

T a0 T

4
dy = —by + b3 — 2bybg + 4b3by — gbé

3 4 7e5  8led
A = ~bo - 302bs = 502 ~ 120 1120
8 4279¢8
ds = —bg + 2b3 + 4bobg — 8b3by + —b = 6.52
8 = s o+ 20ig - dbabe — 8hba + by 161280 © (6.52)

6.6 The inverse of the Mercator parameter

Returning to equation (6.33) we see that the relation between the Mercator parameter and
the conformal latitude is

P(x) =In [tan (g + Z)] =In [cot (% — %)} . (6.53)

Inverting the second of these gives

X)) = g — 2arctan [exp(—1)] . (6.54)

This result, alongwith the last section, provides another inversion of the Mercator parameter.
Giveny = y/a we use equation (6.54) to calculat@nd then use the series (6.51) to find

This solves the problem of the inverse transformation and also allows us to find the scale
factor for anyy using (6.10).

6.7 Summary of modified NME

NME can be modified exactly as NMS to provide a slightly wider domain near the equator
in which the scale is accurate to within a given tolerance. For a tolerance of 1 in 2500 the
range of latitude will differ from that for NMS (Section 2.7) by terms of ordér The
technique is the same, we simply introduce a factdfahto the transformations.

Direct transformation

1— esi e/2
z=koak,  y=koa)(¢), ¥(¢) =In [tan (2 + D <1+ZZ1EZ2> ]

(6.55)
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Inverse transformation

N=afkoa,  d=o() with o =y/kea

(6.56)
whereg (1)) is calculated by either of the following two methods:
Inverse of the Mercator parameter |
¢(1) may be evaluated numerically by the iteration of
s 1 —esing¢, e/
¢n+]_ = 5 — 2arctan lexp(—i/J) <1—|—651n¢)n) ] y (657)
with a starting value
T
$o = 3~ 2 arctan [exp(—1).]
Inverse of the Mercator parameter I
¢(¢) may also be calculated by using the series
d(x) = x + dasin2x + dysindy + dgsin 6y + dgsin8y + - - -, (6.58)

where the coefficients are given in equation (6.52) aifthe conformal latitude) is defined
in terms ofy by

x(¥) = g — 2arctan [exp(—1)] . (6.59)
Scale factor
koa sec ¢
k() = ——© 6.60

To find the scale for a givemon the projection we use the above results to first finehen
giveny = y/koa.
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Chapter

Transverse Mercator on the ellipsoid (TME)

Abstract

TME is derived as a series by a complex transformation from the NME projec-
tion. The method parallels that used in Chapter 4 for the derivation of the TMS

series from NMS.
y
| Py
(0]
|z—plane

v
P'(LY) NME
<

(0] A X
\ 4 (—plane Y z—plan /
ro A “P'(2)

Figure 7.1

7.1 Introduction

In Chapter 6 we derived the NME projection: it can be considered as a conformal transfor-
mation from a pointP (¢, A) on the ellipsoid to a point on the compléxplane defined by
¢ = A+ i wherey(¢) is the Mercator parameter for the ellipsoid given in (6.14).

Let (z,y) be the coordinates of the required TME projection anc:let = + iy be a
general point on the associated complex plane. The aim of this chapter is to find a conformal
transformation

¢ = 2(Q) = x(\ ) +iy(A ), (7.1)

such that (a) the central meridians= 0 andxz = 0, map into each other, and (b) the scale

is true on they-axis. Our method parallels that of Chapter 4 with the appropriate definitions
of the Mercator parameter and meridian distance for the ellipsoid. The resulting series are
those first given by Lee (to sixth order) and Redfearn (to eighth order)—see bibliography.
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The meridian distance

The meridian distance on the ellipsoid was obtained as a series in Section 5.8: two possible
forms are given in equations (5.71) or (5.77). The first of these is (to sufficient accuracy)

m(p) = App + Agsin2¢ + Aysinde + Agsin 6¢, (7.2)

where theA-coefficients are given in equations (5.72). In considering the transformation
from the complex-plane to the complex-plane it is useful to express the meridian distance
as a function of) and write it asM (v), where

M(¥(9)) = m(e). (7.3)

There is no closed expression fbf (/) analogous to (4.6); this is of no import since we
only need its derivatives. (See next page).

Footpoint latitude and parameter

Given a pointP” with projection coordinateér, y) then the projection coordinates of the
footpoint are(0, y). The definition of the footpoint latitude, and the footpoint parame-
terqy; are unchanged from those of Sections 3.3 and 4.1: they are the solutions of

m(p1) =y, M) =y. (7.4)

We shall need to calculate the footpoint latitude (but not the footpoint parameter) for a
giveny. One method of finding the solution et(¢)=y is to use the fixed point iteration
given in equation (5.81),

¢n+1:g(¢n):¢n_w7 n:07172"'7 (75)

a
starting with the spherical approximatign = y/a.
Alternatively, we can use the series given in (5.86) withy) = y,

¢ =p+dosin2u + dysindp + dgsin6p + -+ -, ,u:Bi, (7.6)
0

where the d-coefficients are given in (5.87).

The Mercator parameter: derivative and inverse

The Mercator parameter on the ellipsoid is given in equation (6.14) as

_ 6, T\ (Loesing)?
¥(¢) =In [tan<2 - 4> <1+€Sin¢> . (7.7)
We shall not need this explicit form but we shall require require its derivatives. From (6.12)
b p9) 4o _ v(¢)cosg (7.8)

dp — v(¢)cos¢’ dp — p(o)
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We shall also need(v), the inverse of the Mercator parameter, as a fourth order Taylor
series about the footpoint parametgr This is given in equation (6.25).

_ 2 _ 3
¢—¢1 = (Yv—1P1) Brer + (d];fl)ﬂw%hDQ + w?fl)ﬂw?D:s +

(p—11)?

1 Biciti Dy

(7.9)

where the D-coefficients are given in (6.26). The ‘1’ suffix of course denotes a term calcu-
lated at the footpoint latitude.

The derivatives of the meridian distance
We shall need the derivative of thid (¢)) as functions ofp. From (5.68) we have

dm(¢)
de

= p(¢), (7.10)

and using (7.8) we obtain

oy - AM@p)  dM(p(9)) dp _ dm(e)vcos¢
M (y) = W o W do P v(¢) cos ¢. (7.11)
Proceeding in this way we can construct all the derivatived/¢f)) with respect ta) but
with the results expressed as functiongobDenoting then-th derivative ofM with respect
to ¢ by M (") the exact results for the first six derivatives are given below. We use the usual
compact notation fosin ¢ etc and also make frequent use of the derivatives(ef) and
B(¢) given in equation (5.54):

dv iﬂ_

% = (B —1)ptan ¢, o —2(8 — 1) tan ¢. (7.12)
MO — C% - (7.13)
2M d d d d
M@ = T = (M) 58— we) S = (8- Ve —ve]
= —vsc. (7.14)
M®) = CZ% = —[(B=1V)ptsc +v(c* — 5%)] % = —vc’ (B —1°) (7.15)
= —1/03W3.

/cont.
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MW = A [ {(B-1)pte® = Bucds} (B—17) + v {~2(8-1)t - 2t(1+4)} | %
= wvsc® [48% + B — 7] (7.16)
= usc3W4.

M®) = CZ/]}\? = [{(ﬁ — Dptsc® +v(ct — 35202)} (43% + 3 —t?)

+uscd {(88+ 1)(—28+ 2)t — 2t(1 + £2)} } %
= vc® [48°(1 — 6t%) + B*(1 + 8t%) — 26t* + t'] (7.17)
lex = vWs.
dS M ,
M© = P [{(ﬂ — 1)ptc® + v(—5sct)} W5 + VC5W5] %

= uscd [(—46 — 1) {483(1 — 61%) + B2(1 + 8t%) — 281> + 1}
+ Bt {(126%(1 — 6t%) + 28(1 + 8t%) — 2t%) (—28+ 2) ¢
—(246° — 862+ 28) (2t(1+2)) + 453(1 + tQ)}}
= —wsc” [8B%(11 — 24¢%) — 2833 (1 — 6t7) + B%(1 — 32t%) — 2t + t*]
= —usc®W; (7.18)

We shall find that the derivative® (") and M/ (®) multiply A7 andA® terms respectively
and we shall later justify the neglect of terms of ordet\” ande?\8. Accordingly, we
evaluate these derivatives in the spherical limit in which 0 ands — 1, (except that the
overall multiplicative factors of> are not set equal ta for the sake of visual conformity
with the lower order derivatives, not to improve accuracy). Noting that 3 = 0 in this
limit we find

d"M ve
M = g =— [y (06 - 53204) Welg-1 + vsc® Wﬁ‘,@ 1] p
— T [(1 = 5%) (61— 587 + t*) + £ (—116¢ + 46%) (1 + )]
— —vc™ (61 — 47982 + 179¢* — 19) .
= —vc"Ws. (7.19)
] —
MO %‘84 = [rSswy vy |

1
= wsc’ {7 (61—479¢%+179¢* ) -7 (—958t+716t>—6t°) (1+t%)

= wsc’ (1385 — 3111¢* + 543t* — ¢°) .
= s Wy. (7.20)

Note the minus signs introduced in the definition$1af, Wg andW-.
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Summary of derivatives

MY = pe

M3 = —pse

MB) = —ped Wy W3(¢) = 8 — t*

M@ = ps3wy Wa(¢) = 46% + 5 —t*

MO = v Wy Ws(¢) = 48°(1-6t%) + 52(1 + 8t%) — 28¢” + t*

MO = —vscWs  We(¢) = 88 (11-24t)—285° (1—6t%)+5(1-32t%) —23t> + ¢*
M = —u” Wy Wi(¢) = 61 — 4792 + 179t — 15 + O(?)

M® = vsc™Wy  Ws(¢) = 1385 — 3111¢% + 543t* — 0 + O(€?). (7.21)

The bar oni¥; andWs denotes that the term is evaluated in the spherical limit. This notation
will be standard from here on. Later we will need the expression$ifar. .. Ws in the
spherical approximation: setting= 1 gives

W3(¢) — Wa(g) =1 -2,

Wi(¢) — Wa(g) = 5 — %,

Ws(¢) — Ws(¢) = 5 — 182 + 14,

We(6) — We(¢) = 61 — 58t + t*. (7.22)

7.2 Derivation of the Redfearn series

The direct complex series

Following Section 4.2, the complex Taylor series¢f) about(, on the central meridian is
1 1 . 1
2 = 20+(C—Co) MY — g(C—Co)QMéQ)—§(C—C0)3M53)+@(C—C0)4Mé4)

1 ) 1 )
57 (€0 Mg” — 5 (C=G0) Mg = (C=G) MG+ (=G Mg™ + -+

51
(7.23)

where M = M® (yy), then-th derivative ofM (1) with respect ta) evaluated at.
The leading term in the expansion will be recast in various forms when required:

20 = 2(Co) = iyo = 1M (3po) = iMp (7.24)
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The direct series forx and y

For the direct series we start from a given (arbitrary) pdthat { = X + 72) and choose
(o = iy with thesameordinate in the -plane. Therefore in the Taylor series (7.23) we set

{=A+iy y - Z=xX+y
/(I
Y,=iM(V)
Figure 7.2

¢ — (o = X and evaluate the derivatives@ég = 1. Writing M) () asM (™ and using
zo = 1My — 1M the generalisation of equation (4.25) is

. ) .
s=a iy = iM+)\M(1)—%AzM@)—?)\?’M(:‘M%)\‘*M(“)

Lsar® L x6p® Lty s py®)
—i—a/\ M —a/\ M _ﬂ/\ M —|—§)\ MB) ... (7.25)
The real and imaginary parts of equation (7.25) giwndy as functions of andy:
1 1 1
ey 4 Lyap@ = Lyepre o 1ysy e
yOn ) = M= XM XM — a0 SIS 1 (7.27)

Writing M and its derivatives as functions @ffrom (7.3) and (7.21) gives the Redfearn
formulae for the direct transformation as power series {radians):

Ave? AoveP A ve’

x()\, ¢) = \ve+ 3] W3 + 5l Ws + 7 W7, (7.28)
Nuse  Musc? Apvsed Ause”
y(A, @) = m(o) + 5 1 Wy + Gl We + i Ws. (7.29)

Since all the coefficients on the right hand sides are now expressed in tegmwefhave
replacedr(\, 1) andy (A, ¢) on the left hand side by(\, ¢) andy(\, ¢) respectively.

Conformality and the Cauchy—Riemann equations

The conformality of the above transformations may be confirmed by evaluating the Cauchy—
Riemann equations (4.14)

L 64707
@/\M 4o,

1 1 1
Ty =—yy = AMP — 3@ gASM@ - ﬁ)fM(S) SIS (7.31)

= yo = MU = 2x2® 4 % N6 (7.30)
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The inverse complex series

We start by dividing the direct Taylor series (7.23) by a factoMéfl) which, from (7.21),
is equal tavycy. Therefore

zZ— 2

b b b
o = () + (0 (G e G e (732)

where we have set) = iy, = iMjy. Theb-coefficients are

-2 r(2)
—iM,
b2: o = ’iS(]
VpCo
Y
by=—"— = W
3 oco cW3(¢o)
c 2 r(4)
M, .
b4 = —0 = ZS()C%W4(¢0)
VoCo
(5)
M
bs = Voc% = gWs(¢o)
.2 r(6)
—1M, )
b@ = 0 = ZSocéWG((;SU)
YpCo
Vi
br=—"2- = W
7 Voco coWr(¢o)
<2 r(8)
1M, . '
by = —2— = isocdWs(¢o) (7.33)
oCo

where the functions on the right hand sides are evaluateg suich that)y = ¥ (¢o).

The Lagrange inversion of an eighth order series is developed in Appendix B, Sec-
tions B.6—B.8. If we identify the series (7.32) with (B.23) by replacing- z)/vpco and
(¢ — <o) by w andz respectively we can use (B.24) to deduce that the inverse of (7.32) is

2 3 — 8
C— (o= Z—2)\ Pp2(2—2\ Pp3fz—2\  DPs(*— %2 ’ (7.34)
VpCo 2! VpCo 3! VpCo 8! VpCo
where thep-coefficients are given by equations (B.25) and (B.30). We shall actually need
these coefficients at the footpoint latituge and we choose to write them as

p2 = tcity,

ps= ciVs Vs = By + 281,

pa=iciti Vi Vi=48] —9p —6t],

ps= Vs  Vs=487(1 - 6t7) — 57(9 — 68t7) — T20:t7 — 24¢],

pe = icit1 Vo Vo = 8071 (11-2413) 8453 (3—8t3)+2256% (1—4t3)+600; t14120t],
pr=  SVo  Vi=61+ 662t +1320tF + 72019,

Py =icity Vs Vg = —1385 — 726612 — 10920t7 — 50405 (7.35)
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The inverse series forp and A

y 7=x+Hy
S S
M=y 5
o X
Figure 7.3

For the inverse we start from an arbitrary point with projection coordin&tés:, y) and
move to the footpoint ak™ (0, y) so that we set—zo = (z+iy)—iy = x in equation (7.34).
We must then sefy = i1y, wherey; is the footpoint parameter such tht(y;) = y. Let
¢1 be the corresponding footpoint latitude such thdt), ) = y. Therefore (7.34) becomes

2 3 8
W — ity — = P2 P3( L) P8 T
A + ZZ/J B Zwl - 14151 2! <V101> 3! <I/161> 8! <l/101> ’ (736)

where thep coefficients at the footpoint latitudi have already been given in (7.35). Tak-
ing the real and imaginary parts we have

3 5 7

x x € —
N - — ———V7, Where —y, (7.37
ver 3Wder ° Blvder 0 Tler m(p1) =y, (7.37)

)\(l',y) =

:L‘27f1 ZE4t1 ."L‘th :L‘Stl =
6

Y=t = (7.38)

- - 4 — - 8
2! V%Cl 4! Vfcl 6! V1601 8! I/?Cl

We see that the spherical approximation has been used only in the last term of each series.

Therefore it is equivalent to neglecting terms of oreftz /a)” ande?(x/a)®. This will be
justified when we look at the typical magnitude of such terms.

Finally, we note for future reference the spherical limits of the tebins. . Vi: since
(1 — 1 ase — 1 we have

Vs — V= 1+2t2,

Vi — Vi =—5—6t2,

Vs — Vs = —5 — 28t% — 24t1,

Vo — Vo= 614 1803 + 12015, (7.39)

The inverse series forgp

In Chapter 6, equation (6.21) we derived the following fourth order Taylor series for the
inverse of the Mercator parameter on the ellipsoid:
(Y—41)? (¥—41)?

¢—¢1 = (Y—1P1) frer + Tﬂ10%t1D2 + T&C:%D?, +

(p—1p1)*

1 Bicity Dy,

(7.40)
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where theD-coefficients are given in (6.26). All that remains is to substitutefor v )
using (7.38). It is convenient to use a temporary abbreviation, settiage/v;.

. t1[1 9 | | I+ 3
t2 [ 1 2 2 1
2o W1 4 4 1, ~6 4 y,=8 = Y28
e T TR TR T RGP TR }

.
-y =0 L zo4 3y
c3 | 212121 21214! ’

i A1 og herez = —~ 7.41
(Y —1)* = o 19121215 w erex_y—l. (7.41)

Substituting these expressions into the Taylor series (7.40) gives

1_
¢_¢1 = 5 251t1 [1]

1.

- @$4ﬂ1t1 (Vi — 3t Ds]
1.

— 6306&751 [Vs — 15t DoV + 15¢7 D3]
1 g ey 2717 27172 27,17 47

- S0 [vg — 282D,V — 35t2D5 V" + 210£2D5V; — 10564 D4 , (7.42)

where we use the spherical approximation in evaluating the eighth order term. Substitut-

ing for the D-coefficients from equations (6.26, 6.27) and thecoefficients from equa-
tions (7.35,7.39) our final result foris

2/t 2Bty 2561t 2861t =
= 41— - Uy — Us — U 7.43
(@, 9) 1 203 4l 4 6!v9 6 8!} & ( )

where

Uy =467 —98:(1 — t3) — 1263,
Us = 861 (11 — 24t3) — 1233(21 — 71t2) + 1533 (15 — 98t% + 15t1)
+ 1806, (5t — 3t}) + 360t+
Us = —1385 — 3633t — 40957 — 15755, (7.44)

Later we shall requiré/, andUg in the spherical approximation:

Uy — (_]4 = -5 —375%,
Us — Ug = 61+ 90t% + 45t1, (7.45)
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7.3 Summary of Redfearn’s transformation formulae

) )\3 3 )\5 5 )\7 7
Direct  2(\, ) = Ave + ?’)’,C W + E’)’,C W + 7”,6 Wy (7.46)
Nuse  Mwvsed Avsed Musel —
y(\, ¢) =m(p) + Wy + We + Ws  (7.47)
2 4! 6! 8!
3 5 7
Inverse  A(z,y) = z < * * (7.48)

- 3 5 — 7
viep 3! I/%Cl 5! Vir’cl 7! 1/1701

2/t 2Bty 2561t 8Pt —
— by — _ — - U 7.49
¢($7y) ¢1 QV% 4'Vil 4 6'1/16 6 8'1/% 8 ( )
wztl $4t1 wﬁtl thl =
= — — - — 7.50
V(@) = 2! V%Cl 4! Vfcl 7 6l yf’cl 67 g 1/1801 8 ( )
where
Wy =p0— t2
Wy =46 + 8 —t*
Ws = 43%(1 — 6t2) + 5%(1 + 8t%) — 26t* + t*
W = 884 (11—24¢t%) — 2833(1—6t2) + 5%(1-32t) — 23t + t*
Wy = 61 — 4792 + 179t* — 1° + O(€?)
Ws = 1385 — 311112 + 543t* — 15 + O(e?) (7.51)

Vi =0y + 283

Vi =457 — 961 — 6t

Vs = 407 (1 — 6t7) — B7(9 — 68¢) — 720147 — 24¢]

Vs = 831 (11—24t7)—8433 (3—8t3)+22537 (1—4t3)+6005, 3 +120t]
Vi = 61 + 662t2 + 1320t} + 720t8

Vs = —1385 — 7266t — 10920t1 — 5040¢ (7.52)

Uy =467 — 981(1 — 17) — 124
Us = 861 (11 — 24t3) — 1263 (21 — 71t3) + 1567(15 — 987 + 15t1)
+ 1806 (5t2 — 3t}) + 360t}
Us = —1385 — 3633t — 4095t — 1575t% (7.53)

and (a)m(¢) is the meridian distance which may be calculated from the series (5.71)
or (5.77); (b)s, ¢, t denotesin ¢, cos ¢, tan ¢; (c) the functionsv(¢) and 5(¢) are de-
fined in equation (5.52, 5.53); (d)is measured in radians from the central meridian; (e) the
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subscripted terms in the inverse series are to be evaluated at the footpoint latitsuieh
thatm(¢,) = y.

Comments

1. The series given on the previous page are in full accordance with those printed in Red-
fearn’s article in the (Empire) Survey Review. They differ in format since Redfearn
writes the series in terms @f¢) andv(¢) rather than3(¢) ( = v/p) andv(¢). In
the original paper Redfearn’s formulae a few ‘1’ subscripts are omitted in the inverse
series.

2. We shall defer an analysis of the accuracy of the above series until we present the
results for scale and convergence in the next chapter. Then in Chapter 9 we discuss
the results in the context of two important applications, UTM and NGGB.

3. The TME projection may be modified so that the scale on the central meridian is less
than unity, equal to or approximately equal to 0.9996 for UTM and NGGB respec-
tively. Unit scale is achieved on two lines but for TME these are neither meridians
nor grid lines. This modification reduces the range of scale variation.

4. For computational purposes the series should be written in a ‘nested’ form. For ex-
ample equation (7.46) can be written as

A{WA(WAW)H e @54

SU:VX

3! 5! 7!
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Chapter

Scale and convergence in TME

Abstract

Cauchy—Riemann conditions for the inverse. Grid convergence in geographical
coordinates. Azimuths and bearings. Grid convergence in projection coordi-
nates. Scale factors. Redfearn series for convergence and scale. Modified TME.

8.1 Cauchy—Riemann conditions for NME to TME

In Chapter 7 we proved that the transformation NMEME was conformal by checking
that the series (7.28, 7.29) satisfied the Cauchy—Riemann equations (4.14). That is,

C - Z(C) = 37(/\71/1) + Zy()‘a w) : T = Yy, Top = — Y- (81)

Since a conformal transformation is angle-preserving then the inverse transformation must
also be angle-preserving and conformal, satisfying the following conditions:

z— C(Z) = )\(x,y) + qu/}(x?y) : Az = wy7 )\y = —Yg. (8.2)

Itis straightforward, and useful, to show that the Cauchy—Riemann equations for the inverse
transformation follow from (8.1). Consider the identities

z = x(Nz,y), ¥(2,y)),

Differentiate both these identities hyand then both by, giving four equations:

1 =23z + %%, 0= :EX)‘?J + xwwy’
0=yrAg + yw%, 1= y)x>\y + y¢7py' (8-4)
Eliminatingv, then\, from the left pair and theg, and\, from the right pair:
Yy = J Az, yn = —J Yu, Loy = _J/\y’ T\ = Jwya (85)

where

J = 2)yp — Yazy = 23 + Y3 = |zr +iya? = [2/()?

TICER T et T N2 R (8.6)
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Now neitherz’(¢) nor ¢’(z) can vanish, for otherwise the transformation and its inverse
would degenerate inte=constant o=constant respectively (so that evaryo, \) would

map to the same point). Therefafenust be non-zero and bounded and equations (8.5) can
be used to show that the equations (8.2) follow from (8.1).

8.2 Azimuths and grid bearings in TME

Following Section 3.5 we consider the geometry of infinitesimal elements on the ellipsoid
and corresponding elements on the NME and TME complex planes. Both steps of the
projection are conformal and the azimutton the ellipsoid is equal to the angle between

projected meridian and the projected displacement on both NME and TME planes. The

(@) ELLIPSOID (b) NME © T™MEy Sx N\
M Qoo M Qudw )
o P80 o By ilyS 2N
IEITANS / A+3L
P| vcosddrh [N ¢ P' oA N'\II ¢ adll =X
A A+OL A A+OL VP,
Figure 8.1

grid bearings on the TME projection is defined as the angle between grid north (on which
dx = 0) and the tangent to the projected displacent®f®”’. The TME projection conver-
genceyy, is defined as the angle between TME grid north and the projected meridian—and
because of conformality we see that the displacéife’, P'Q)’ and P’ N’ are all rotated

by ~ to the corresponding displaceme®$M”, P”Q"” and P” N”. With these definitions

we see that just as in Section 3.5 we have

This equation can be used to find bearings from azimuths or vice versa if we-Know)
andv(z,y) respectively. That isx=8+(z,y) or B=a—~(p, \).

(8.7)

8.3 Grid convergence in TME

We have defined grid (or projection) convergengeas the angle between true north and
grid north on the projection d”, where true north is defined by the tangent to the projected
meridian atP”. Sinced\ = 0 on the projected meridian, and remembering that we are now
consideringr andy as functions ofA and«, we have

dy | sx=o YnOA + 4yt [53 o Yp T

where we use the Cauchy-Riemann conditions (8.1) in the last step. This last form is to be

, (8.8)
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preferred since the Redfearn formulae (7.46, 7.47) gieady as power series in with
coefficients as functions af. Therefore we have

v\, @) = arctan <yk> (8.9)

Tx

The calculation of the convergence in projection coordinates follows immediately if we use
equations (8.5) to set, = —J ¢, andxy = J 1)y:

~v(x,y) = —arctan <1§$> , (8.10)

where) and A are power series in (7.50, 7.48) with coefficients evaluated at the foot-
point ¢1.

8.4 Point scale factors in TME

If we work from first principles (compare equation 2.19) the square of the point scale factor
is given by the ratio of the metric distances on the TME projection and the ellipsoid:
B 522 + 6y
e p20¢% 4+ v2 cos?p IA2”
From the derivative of the Mercator parameter on the ellipsoid, equation (6.12), we have
thatp ¢ = v cos ¢ 6. Therefore we can write the above as

(8.11)

s §x?% + oy? 12 9
T VZcos?h a2(6y? +6NZ) e

The first of these factors is just the square of the scale for the transformation from the el-
lipsoid to NME—see equation (6.10). The second factor, which we have defined,as

is the square of the scale factor between the NME and TME projections (or the magnifica-
tion of the conformal transformation between the NME, TME complex planes). Using the

Cauchy—Riemann equations (8.1) we can rewrite the numerator as follows:

(8.12)

612 + 0y? = (209 + AN + (Y40 + yadA)? (8.13)
= (@, + Y3 )00* + 2(zyxx + Ypyr)ov 6X + (23 + y3) 0N
= (23 + y3) (692 + 0)2). (8.14)
Therefore the scale factor can be written as
1 1/2 _ Lxsec YA, @)
k(A = A S £ 4 8.15
9 = Greoss 1A T U = T G coss (6.15)

where we use (8.9) in the second step. We have also replalbgd, the usual notation for
an isotropic scale factor, sinag andy), are independent af (depending only on position).
Using equations (8.6, 8. 10) this result can be transformed to

A2 21-1/2 _ 1 !
kz,y) = v(¢) cos CoSqﬁ {x+uz} (@) cosp Agsecy(z,y)’

where it is assumed that we have first calculated, y).

(8.16)
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Alternative derivations of scale and convergence

In Section 8.2 we remarked that all linear elements in the complex NME plane are rotated
by the angle of convergeneewhen we transform to the complex TME plane. Therefore if
we denote the elemefit’ Q' in the NME complex plane b§y¢ = r expl[if] then the element
P”Q" will be represented byz = Rexp [i(§ + )] wherem = R/r is the magnification

of the element. Since the limit of the ratio of these elements is the valug@fat P we

must have

0z R . .
iy — o — el (- iy
xx+iyy = 2 (¢) = lim 5< e me'7. (8.17)
Therefore
~ = arctan <zk> , m = {3 + y3}/2, (8.18)
A

reproducing the previous definitions in equations (8.9) and (8.15), the latter after multipli-
cation by the scale factdng for the transformation from the ellipsoid to NME and after
dividing by a factor ofa to allow for the fact that we chose (Chapter 4) to label the NME
complex plane by, ¢) rather thar(a\, av)).

8.5 Series for partial derivatives

The expressions for the convergence and scale factors in equations (8.9), (8.10), (8.15) and
(8.16) depend on the partial derivatives, v, Az, ¥, of the Redfearn series (7.46-7.50).
Setting\ = Acandz = 33/1/1 we have

Ty = % =  wel|l+ A2W + fxlws + %A W7,] ., A=) (8.19)
Yy = gi vk |1+ 6)\2W4+120)\4W6+5040)\6W8] (8.20)
Ay = gi - Vllcl :1 - 59;2%, - ﬂ%v5 - 7;05%} 7= Vil (8.21)
by = ‘;Z - —2; 1+ éx2V4 + %20 W+ 5014056178] . (8.22)

Note that, apart from the overall multiplicative terms, the series\fds obtained from that
for z) by the replacements — z andW,, — —V,, (n odd); the series fop, is obtained
from that fory, by the replacements — z andW,, — V,, (n even).

NB. In constructing the Redfearn series we discarded terms of afdend (z/a)? so we

must discard terms of orde® and(z/a)® (and higher order) in the derivatives and in any
expressions obtained by manipulation of the above series. Moreover the coefficiants of
z7, \¥ andz® terms of the Redfearn series were evaluated in the spherical approximation
(e = 0, B = 1); therefore, for consistency, we must use the spherical approximation in
coefficients of terms of the ordef, 76, \” andz” wherever they arise in the manipulation

of the series for the derivatives.
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The quotient of y and xx

Using (E.31) we find the inverse af, in (8.19) to be such that

Ve _ 1% <W3> 3 (”%_W??) 3 (V_W_V_V?*WSJ_V?) . (823

2 24 4 720 24 8

Note that thd¥V; andWW5 which the inversion casts into the last term have been replaced by

their spherical limits. The product of the above with (8.20) gives
Py [1 T+ ag) + ag\t + aGXG} , (8.24)
T

where the coefficients (and required spherical limits) are calculated using (7.21, 7.22)

ay =t -t =28 -8+ ar =3 (1+¢)
_We  WsWy WP W
“METo0 T T2 T4 o
1 1
=15 [54(11—24t2)—53(11—36t2)+52(2—4t2)—45t2+2t4}, G =1z (2+4t2+2t%)
_ Ws  WslWs W32W4_V_V4V_V5_W33 WsWs Wy
67 5040 240 24 144 8 24 720
1
= = [17 5142 4+ 5144 + 1768 (8.25)

The quotient of ¢b,, and A,

Bearing in mind the comment made immediately after equation (8.22) we see that if we
define
Yo
Az
then the coefficients follow by analogy with equations (8.25). Using (7.35, 7.39) we find
that the r-coefficients and their spherical limits are

= -tz []_ + 1"252 + 7“454 + 7‘656] (8.26)

Vi V3 17, o ) .
6 2 -3 2 B 3 :|’ = ——
"2 6 + 2 3 [ ﬁl ﬁl ) 3
Ve VWY
M=t 2 Tr T
! _ 2
= = |Bl(11-248) 38} (8-238) 1158 1—4])+156:8 |, F=
Y7 il = 2= - — —3 — — _
1
6 Vs V3V V3 Vy V4Vs Vi V3 V5 ﬁ _ 7 627

T 5040 ' 240 ' 24 ' 144 '8 24 720 315
Note the absence of termsif t* or ¢¢ in the coefficients, 74 Or 7.
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8.6 Convergence in geographical coordinates
From (8.9) and (8.24) we have
tany(g, \) = At [1+ apd2 + aghd + a6X6] (8.28)
and we calculate asarctan(tan y) by using the series (E.20):
1 3 1 5 1 7
vztanv—gtanV+gtan’y—?tan7+---. (8.29)

To order\” the higher powers ofan ~ are given by

tan2'y = X2t2 [1 + 2a2X2 + (26_1,4 + ZL%)XZL} tan5'y = X5t5 [1 + 5562}?2}
tan®y = A3t3 [1 +3asA? + 3(aq + a%)Xﬂ tan®y = 90 [1]
fanty = X4t [1 n 4@2X2} tany = \¢7[1] (8.30)
so that
~ N3¢ 2ot At
Y =M+ [3as—t*] + = [5as—5ast*+t'] + - [7ag—7(as+a3)t*+Tast —t°] .
(8.31)

Substituting thex-coefficients from (8.25) gives our final result

~ 1~ 1~ 1~ = ~
N =M+ -NtHy+ —MNtHs+ —\NtH A\ = ). 8.32
7(¢7 ) +3 3+15 5+315 7 Cc ( )

Hz =203 - 3,
Hs = BY(11 — 24¢%) — 33(11 — 36t2) + 5(2 — 14t%) + B2,

H7 =17 — 26> + 2t*. (8.33)

8.7 Convergence in projection coordinates

From (8.10) and (8.26) and
tany(z,y) = t1T [1 + 1T gzt + 7’5@6] . (8.34)

Comparing this equation with (8.28) we see from equation (8.31) that

., T 91 T°h o, a1 Tt S =2\2 e 44 6
V=Tl [3ro—t7] +— [5r4—5rati+t1] T (776 —T7(T4+73) t1+Trat1—t]] .

(8.35)
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Substituting the-coefficients from (8.27) gives our final result

1 1 1
=Tt + -2 K3+ =311 Ks + —7 1 K == 8.36
y(z,y) =2 1+396 1 3+15CE‘ 1 5+315CE‘ 1447, T % ( )

where
Ks =267 — 33 — 11,

K5 = B1(11 — 24t3) — 363(8 — 23t%) + 533(3 — 14t3) + 3063 + 3t7,
K7 = —17 — 7T7t3 — 105t} — 4515 (8.37)

Setting/51 = v1/p1 gives the Redfearn series except that he writeather than a more
correcty; etc.

8.8 Scale factor in geographical coordinates

From (8.15) we have

zysecy(A, @)
V COSp

k(X ¢) = (8.38)

where x is given in equation (8.19) and we evaluate v by using the binomial se-
ries (E.28) and the expressions fan™y given in (8.30):

T 159 154 L S6ip
—=14=-A —A ——A 8.39
e +2 W3+24 W5+720 Wr, ( )
1 1 1
secy = {1 + tan27}1/2 =1+ Etanzfy ~3 tany + 6 tan®y + - -

1+ 1~ 1~
=1+ §A2t2 + §A4 [Bagt® — '] + 175)‘6 [16a4t> + 8azt® — 8ast" + t°]
(8.40)

1~ 1~

k(g \) =1+ 5AZ(Wg +1%) + ﬂX*(W5 + 612 W3 + 24ast? — 3t*)
26— — — —

+ 2 (Wr+15t*W5+360aat* W3 — 45t W3 +720a4t°+360a5t> —360aat +45t°)

720
(8.41)

Finally, using théV -coefficients from (7.21 7.22) and tlhecoefficients from (8.25),
k(X ¢) =1+ e+ Liom + Lyom A= \c (8.42)
) — 2 2 24 4 7920 6 — ) .
Hy =3
Hy = 433(1 — 6t%) + B2(1 + 24t?) — 4pt*
Hg = 61 — 148t + 16t (8.43)
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8.9 Scale factor in projection coordinates

From (8.16) we have
1 1
k = .
(@,y) v cosp Az secry
Ignoring the factor of cos ¢ for the moment we follow the same steps as in the previous
section but calculateec v using the expression faan v given in equation (8.34):

(8.44)

Aeg = — |1 — fx2vg, _1s vy — — 7%, (8.45)
1 1 1
secy = {1+ tan2fy}1/2 =1+ itan% ~3 tany + 16 tanSy + - -

1 1 1
=1+ 227 + =3 [8rot] — 1] + —=7° [16748] + 87517 — 87at] + 1],

2 8 16
(8.46)
A sec*y:—[l—i-lx ( V3+t2) L (—V5—6t2V3+247"2t2—3t4)
v vic 2 24" ! o
~6
+5 0( Vo —15t2Vs— 36079t V3 +45t 1 Va+ 7207413 4360753 — 3607 o] +45t6)}
1 1. 1 1
= 1 — —Ip 8.47
V101|: +290 p2+24$ p4+7201’ De| > ( )
where the coefficients and their spherical limits are evaluated using (7.35, 7.39) and (8.27):
p2=—P1—t] pp=—-1-1]
pa = —403(1 — 6t3) + BE(9 — 52t3) + 426113 + 9t} py =5+ 14t2 +9t]
P = —61 — 3317 — 495t] — 225t5. (8.48)

The factor v cos ¢
We expandf(¢) = v(¢) cos ¢ in a Taylor series about the footpoint latitugde

F(8) = (1) + (6-60)F(01) + 51 (6—617F"(01) + 5 (6—60)* " (6n).  (8.49)

The series terminates with the third order term since equation (7.49) showsthat)* is
of orderz® and is therefore neglected; furthgr—¢; )? is of orderz % so the third derivative
must be evaluated in the spherical limit, € a, v/ = " = 0). Therefore

f((b) = ve, f/(¢) - I//C—I/S, f//(¢) = Vl/C_QV/S_VC? fm((b) = as,

and

L las)(6—)°.

siie—2visi—nal(é—61)" + 5l
(8.50)

vcos g = V1C1+[Vic1—V181}(¢—¢1) 21



Chapter 8. Scale and convergence in TME 8.9

Divide by v ¢; and using the expressions fgl/v andv” /v given in (5.55):

VCOSgb tl 1 2 2 2 tl 3
=1——(¢p— - — 3p1t7 — 3t - —(op— . 8.51
— ) (p—¢n) 272 (B1 + 361ty D(p—¢1)" + 5 (p—¢1) (8.51)
Substituting for{¢—¢; ) from (7.49) we have
v Cos ¢ t1 1 9 1 4 1 =
=1— = |—=fit17 — —it17 Uy — — 1,70
e 3 51tz” — 5 f1t1 77Uy wopt1% Us
1 1 ~ 1 5 6= t1 1.4
- Tﬂ%(ﬂﬁsﬂlt?—?ﬁ) 4ﬁft?x4+24t?w6U4} +5 [—815“;’366} . (8.52)
Using theU-coefficients in (7.44, 7.45) we find
v cos ¢ 1, 1_, 1 4
=14 — — 8.53
el + 5T ¢ + og L + 700" 60 ( )
g2 =t} 4 =1,
qu = 32U, — 362(B1 + 3612 — 3t3) = 4842 — 12142 — 3t} 7y = —8t2 — 31,
Us = t2Ug — 152U, — 15t} = 1362 + 120t + 459, (8.54)

The scale factor

Multiplying the series (8.47) and (8.53) gives the product

veosp A\psecy =1+ éizgz + if‘lgzl + %0%65_76, (8.55)
G2=p2+q =0 gg=—1
91=p1+qa+6page = —4B7(1 — 6t1) + B1(9 — 48t1) + 420117 G4 =5
96 = Pe + @6 + 15(P2Gs + GopP4) = —61. (8.56)

The actual scale factor (8.44) is the inverse of (8.55); using (E.32) we have,

k(z,y) =1+ %%21(2 + 2—14%4& + %%I_(& 7= Vfl (8.57)
where
Ky = —go =1,
Ky = —g4 + 693 = 4631 — 6t3) — 36%(1 — 16t2) — 243,12,
K¢ = —gg + 3095, — 9075 = 1. (8.58)

Settings; = v1/p1 gives the Redfearn series except that in the sixth order term he has a
denominator of}p? as against? here. Since we assume the spherical limit for this term

both could be replaced by and there is no inconsistency.
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8.10 Final results: Redfearn’s modified TME series

Direct series
As for NMS, TMS and NME simply multiply (7.46) and (7.47) by a factorkgf

~ A AP N — ~
v\ @) =kov (A + rWs + W+ W7, A=Ac (8.59)

(8.60)

XQVt X4yt XGVt XSVt—
y(X, @) = ko [m(¢)+ 5 T Wat = Wet Ws]

Inverse series

Setx—ux/ky and replace& = z /vy by * = x/kov1. Thefootpoint latitude, ¢1, must be
found from (7.4) or (7.5) withy—y / ko: itis the solution ofn(¢1) = y/ko. Equations 7.48,
7.50 and 7.49 become

T T T A
($7 y) C1 3! C1 3 5! C1 5 7! C1 & v kovl ( )
2% T z% 8% = y
_ _ _ Vi — Ve — V. == 8.62
¢($, y) ,gbl 2 C1 4! C1 4 6! C1 6 8! C1 8 m(¢1) k‘o ( )
2/t T/t %81ty 861t —
bz, y) = o1 — 5~ Ui g Us — 3 Us, (8.63)

Scale and convergence

The calculations of the present chapter may be applied to the modified series above. Clearly
the derivativesty, y, pickup a factor ofky and the derivatives,, .. pickup a factor of

1/ko. The modified forms of 8.42, 8.32, 8.57 and 8.36 are

1~ 1~ 1 ~4— ~
k(X @) = ko [1 + §>\2HQ + ﬂxlm + mxﬁﬂﬁ] , A= A, (8.64)
BN 133 L +5 L +7. =

YA @) = M+ SNt Hy + 7oA Hy + o ATt Ho, (8.65)

Be,y) = o |1+ 232K + 3Ky + 30K m(¢1) = —, (8.66)
Y 0 2 2 24 4 720 6] > 1 koa .

(z,y) =Tt b Ky K+ ——3THE =" (867
779—1313151531517, = kot .

Note 1: both series for the scale factor give a valuégbn the central meridian.

Note 2 as usuak=cos¢, t=tan¢, [=v(¢p)/p(¢) from (5.53) and the ‘1" subscript
denotes a function evaluated at the footpoint latitude. For convenience all of the required
coefficients are collected on the following page.
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All coefficients

ANz, y)

Y(z,y)

o(z,y)

k(z,y)

v(z,y)

Ws = — t*
Wi = 48%(1 — 6t) + (1 + 8%) — 28¢* + t*
Wy = 61 — 4792 + 179t* — 1% + O(€?)

Wy =46+ -t
We = 884 (11—-24¢%) — 2833(1-6t2) + 5%(1-32t) — 23t + t*
Wy = 1385 — 3111t2 + 543t* — 15 + O(€?)

Vi =0y + 23
Vs = 463(1 — 6t3) — B2(9 — 68t3) — 726,17 — 24t]
Vi = 61 4 6623 + 1320t] + 72015

Vi =467 — 901 — 6tF
Vs = 8071 (11—-24t%)—8433 (3—8t2) 422547 (1—4t3)+6005, 13 +120t]
Vs = —1385 — 7266t — 10920tF — 50409

Uy =467 —98:.(1 — t3) — 1243

Us = 861 (11 — 24t%) — 1263 (21 — 71t2) + 156%(15 — 982 + 15t7)
+ 1808, (53 — 3t]) + 360t}

Us = —1385 — 36332 — 4095t1 — 1575t%

Hy =3
Hy = 4831 — 6t%) 4 (1 + 24t%) — 4512
Hg = 61 — 148t + 16t*

Hy =23 -p3
Hs = 3411 — 24t%) — 33(11 — 36t%) + 5%(2 — 14t%) + 12
H7 =17 — 26t% + 2t*

Ky =3
Ky =467(1 — 6t7) — 367 (1 — 167) — 246147
Kg=1

Ky =207 - 3p1 — 1]
K5 = 0111 — 24t%) — 333(8 — 23t3) + 567(3 — 14¢3) + 303,13 + 3t}
K7 =—17—77t3 — 105t — 45t% (8.68)
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Chapter

The UTM and NGGB projections

Abstract

A review of projections, grids and origins. UTM and NGGB projections. Nu-
merical discussion of the variation of scale and convergence. The accuracy of
the Redfearn series. Approximations to the series. The OSGB series.

9.1 Projections, grids and origins

So far we have rather casually mixed the terms ‘projection coordinates’ and ‘grid coordi-
nates’. We must now be a little more precise for the two are logically distinct and rarely
equal. In fact we must consider four reference systems:

« Geographic coordinates on an ellipsoid (of revolution).
« The projection coordinates in the plane.
« A set of grid coordinates relative to true and false origins.

« An alpha-numeric grid reference system.

We will discuss each of these points in turn with examples relating to the National Grid of
Great Britain (NGGB) and the Universal Transverse Mercator (UTM).

Geographic coordinates

The basic data of any survey are the latitude and longitude of all features of interest. It is
important to remember that in each survey the)) coordinates are defined with respect

to one particular ellipsoid of revolution. For example the NGGB projection is based on the
Airy 1830 ellipsoid and UTM is based on the International 1924 (aka Hayford 1909) ellip-
soid. Remember that there is no such thing as an ‘absolute’ value of latitude or longitude—
the same location has different geographic coordinates with respect to different ellipsoids.
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Projection coordinates

We consider here only the modified Transverse Mercator projection coordinates derived
from the latitude and longitude values and the parameters of the chosen ellipsoid by the
Redfearn formula forz(\, ¢) andy(\, ¢) in equations (8.59, 8.60). These formulae give
Cartesian coordinates withpsojection origin where the central meridian crosses the equa-
tor. Our convention (in agreement with Snyder) is that the positiagis is directed north-
wards along the projection of the central meridian and the positiaeis is eastwards along

the projection of the equator. (Beware of alternative conventions. For example the original
paper of Redfearn, and most ‘continental’ texts, hawandy interchanged).

In the introduction we called the Cartesian representation defined by equations (8.59)
and (8.60) a ‘super-map’. From (8.59) we see that if we reskrict be less than say’5
or about 0.1 radians, then therange of this super-map will of the ord&0® metres and
from (8.60) we see that the distance between the equator and pole on the central meridian
is kom(m/2) ~ 107 metres. Actual printed maps are then obtained by scaling the super-
map by the representation factor (RF). For example the Landranger maps produced by the
Ordnance Survey of Great Britain (OSGB) have an RF of 1:50000 so that a sheet which
measure 80cm square represents an area approximately 40km square on the super-map or
on the ground. The caveat ‘approximately’ is necessary since we know that the scale in the
TME projection is the complicated function given by equation (8.64), approximately unity
when close to the central meridian.

Note that the maps produced in this way need not be embellished by lines of any kind.
There is no obligation to show the andy-axes or the origin of the projection coordinates.
There is also no obligation to show any lines marking constant valuesntly. There is
no obligation to show lines (curves) of constant latitude or longitude.

Grid coordinates: true and false origins

It is of courseusefulto to overlay the map with some kind of reference grid system so that
we can refer precisely to the locations of features of interest but there is no necessity that
the grid should coincide with the Cartesian system used in the construction of the map. For
example we might wish to superimpose a polar grid centred on some point so that positions
were related to that point by a distance and a direction. Or a surveyor might construct a large
scale map overlain with a grid aligned to some prominent feature such as a river or highway.
Thus we see that grids are an arbitrary addition to the map but, if present, we must know
how to relate them to the underlying projection and geographic coordinates. In practice,
most gridsare taken as Cartesian coordinate systems aligned to the projection coordinates.
This is certainly the case for both UTM and NGGB but the origins of these grids are chosen
differently. For UTM the grid origin is chosen to be coincident with the projection origin
but, for NGGB, it is taken at latitude 48l on the central meridian. These are examples of
the choice of thérue origin for a grid.

Now TM projection coordinates are not positive everywhere; they are negative both
west of the central meridian and south of the projection origin. It follows that the grid
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coordinates referred to a true origin on the central meridian will also take positive and
negative values. This is unsatisfactory for many practical applications and we therefore
introduce afalse origin of the grid at a position such that the grid coordinates relative to
that point are positive throughout the region of interest. These positive coordinates, rounded
to the nearest metre, are callédstings(E) andNorthings (N). The choice of false origin

for UTM and NGGB is described in the next sections.

9.2 The UTM projections

UTM is a collection of 60 distinct modified
TME projections based on the International 1924 3
(aka Hayford 1909) ellipsoid; each is of &idth -
in longitude and their central meridians are at
A = —177, —171,-165.... The figure, which
is not to scale, shows zone number 30 which in-
cludes my home city of Edinburgh at H: the pro-
jection is centred on3V and it covers the region
between parallels at 88 and 80S and between
the meridians at®V and Greenwich. The actual
aspect ratio of_the grid overlying the proj_ectic_)n . — giuét;r 19000000
can be appreciated from the box shown in Fig- "1 E
ure 3.5; the difference between TMS and TME
is not visible at such a small scale.

1534993
833960

-9329291

6200666

N4 \

The true originT” of the UTM grid coincides
with the origin of the projectiorO where the
central meridian meets the equator avs We
treat the hemispheres differently and introduce gost | ¥ ] - 1116651
twofalse origins, both are 500km west of the true -t
origin but one, for the northern hemisphere,isat E| E 558129

Fy on the equator and the other, for the south- 3W
ern hemisphere, is at a poihRt 10000km below 500000 1000000
the equator on the projection. Therefore the east- Figure 9.1

ings and northings for points in the northern and
southern hemispheres are

E=E0+z(\¢), EO=500000 (9.1)
0 (N)

N = NO +y(\ NO = 9.2

Ty 9) { 10000000 (S) (0:2)

wherez, y are calculated (to the nearest metre) using the modified TME series (8.59, 8.60)
taking \ relative to 3W (in radians) andc; =0.9996. Note that~0, N0) are the coor-
dinates of the true origin (at = y = 0) relative to the false origin on each grid. The
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figure shows the eastings and northings of several points on the perimeter of the zone: (a) at
A = 0 on the equator we havE = 833960, N = 0; (b) atA = 0 on the parallel at 8N

we haveE = 534993, N = 9329291. Thus the width of the UTM zone at the equator is
approximately (recalky # 1) 668km and at latitude 84 it is approximately 70km.

The inverse relations are the series (8.61, 8.63) with the replacemertiyot — E0
and coefficients evaluated at a footpoint latitude such that

Y N —NO

m(¢1)=k70= P (9.3)

Grid reference systems for UTM

Eastings and Northings are measured in metres and provide a purely numeric grid reference
system. For example the grid reference of my armchair is E=488533, N=6200666 (in zone
30 north). This is a rather unwieldy system because we have to give large numbers: in
the northern hemisphetg lies between 166040 and 833960 aNdlies between 0 and
9329291. To avoid such large numbers the grid reference system has been maodified to an
alpha-numeric referencing system with the following components:

o The zone number: in my case 30.

« Each zone is split into twenty latitude sub-zones, nineteen of extesta@ing from
80°S and one of 12finishing at 84N. Each of these twenty latitude bands is desig-
nated a zone letter from C to X, with | and O excepted (to avoid ambiguity with digits
1 and 0). My home (approximately 37N, 3°11'W) is just within the northern limit
of zone 30U, centred orf8/ and running from 48to 56°N. The extent of this sub-
zone in projection coordinates is approximately 890km north-south whilst the width
varies from 447km to 373km as one goes north.

« Within each of the sub-zones the 100km squares are labelled with row and column
letters; for example Edinburgh is in a 100km square labelled UG. Thus 30UUG fixes
my home to within 100km. (For a full description of the labelling of the 100km
squares see the DMA manual listed in the bibliography.)

« Within a 100km square the Eastings and Northings range from 0 to 99999m so that
1m accuracy is given by two five digit numbers. Thus the full UTM grid reference of
my armchair is 30UUG 88533 00666.

« Such precision is often superfluous and a pair of numbers with 4, 3, 2, 1 digits may
be used for accuracy to within 10m, 100m, 1km, 10km (of the left hand and bottom
edges of a box of that size). Thus

— 30UUG 8853 0066 fixes my home to within 10m
— 30UUG 885 006 fixes my home to within 100m

— 30UUG 88 00 fixes the centre of Edinburgh within 1km
— 30UUG 8 0 fixes Edinburgh within 10km
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9.3 The British national grid: NGGB

The British national grid (NGGB) is a grid overlain on the TME projection centred on
longitude 2W and based on the Airy 1830 ellipsoid, for which the parameters are given in
Section 5.2. It is a modified projection with a valuekgf = 0.9996012717 on the central
meridian. This value arose when the 1936 re-survey was constrained to be as close as
possible to the previous survey at a number of selected points. For most practical purposes,
and in the remainder of this chapter, we will talkga 0.9996.

Clearly only a small area of the projection is
needed, just the small box shown in Figure 9.2,
so we take the true origin at latitude = 49°, 14 ?
or 0.855rad; this parallel is slightly south of the
area mapped by the OSGB. The false origin is
then chosen west and north with E0=400000mt-2
and NO=-100000m so that mapped area is com-
pletely toits eastand northand all Eand N values | |
are positive. Recall that EO and NO give the posi-
tion of the true origin relative to the false origin.

Figure 9.3 shows the grid in greater detail. %8
There are several features to be noted. (a) East/a
ings and northings are normally used and quoted g
in metres but in this figure we have shown their |
values in kilometres; (b) the region over which
NGGB is extant is defined in terms of ranges of %4 [~
eastings (0—700km) and northings (0—1300km)
relative to the false origin; this is unlike the UTM 02
zone which is defined on the ellipsoid in terms of

| |
meridians and parallels; (c) the 100km squares : /',"_\ﬂ !
are annotated by with the letter pairs which are 0 :p:roj%%,lﬂ i i
used in the alpha-numeric grid reference scheme; N ' |
(d) meridians and parallels are thiarvedlines— 04 -02 0 0.2 0.4
compare with the TMS projections such as Fig- _ x/a
ure 3.3; (e) the lines on whidhis equal to 0.9996, Figure 9.2

1 and 1.0004 (bounding the region of ‘acceptable’ scale accuracy) are shown as lines which
appear to be straight—but see Section 9.4 for a truer statement.

The territory covered by NGGB requires a much wider longitude range than UTM; it
must extend ZE to W, an interval of 9 degrees compared to the 6 degrees of UTM.
Moreover this longitude range is not symmetric about the central meridian— 4 degrees to
the east but 5 degrees to the west. This means that NGGB requires use of the transformation
formulae at up to 5 degrees from the central meridian.

[Aside. Although the grid clearly covers Northern Ireland (and part of Eire) it is not
used as a reference system in that province. The excluded region is shown in Figure 9.3
(heavy dotted line). In both Northern Ireland and Eire one uses a TME projection based
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NGGB: TME centred on 2 degrees W
Longitude (central meridian at 2W)
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Figure 9.3
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on a slightly modified Airy ellipsoid centred on the meridian8a\V; the grid having a
true origin on this meridian at latitud&°30’N and a false origin such that EO=200000m
and N0=250000m. The scale modificatiorkis= 1.000035. (See the Bibliography for a
reference to a discussion of this unusual factor).

Returning to NGGB we see that the equations for E and N must take into account the
shift along the meridian to the true origin as well as the translation to the false origin:

E = E0+ z()\¢) = 2 + 400000, (9.4)
N = NO + [y(\, ¢) — kom(¢o)] = y — 5542868, (9.5)

where we have calculated (¢g) with ¢g = 49° = 0.8552 radians using (5.71). Faor
andy we use the Redfearn series (8.59, 8.60) with the understanding ttiatradians)

is measured from the central meridian &2 The inverse series are again calculated
from (8.61, 8.63) withe replaced by — FE0 and the footpoint calculated from

y N-NO

m(¢1) = —

ko P m(¢o) (9.6)

Using the above formulae | calculate that, to the nearest metre, | am sitting at E=325701,
N=673642. This is in the 100km square labelled NT so the alpha-numeric grid reference
is NT 25701 73642 to within 1m. As for UTM we can use shorter grid references such as
NT25707364, NT257736, NT2573, NT27 for accuracy to within 10m, 100m, 1km, 10km.

9.4 Scale variation in TME projections

Scale variation in TMS

Since the differences between TMS and TME are small (of oedlit is instructive to
review the properties of the scale factor in TMS as a function of the projection coordinates.

If we use the notatiot(z, y)\TMS for the TMS scale factor we have the exact result from
equation (3.73),
T
k(z, ( — ko cosh [ = 9.7
(020 = Focost () 07)
and the series to sixth orderinfa is
1 1 1 x
Ra,y)|, =k [1+ 577+ @t + 7 = 9.8
(@, 9)] ;g = o [ Tt ot T ag” "7 koa (©.8)

This scale factor is a function afonly and it is straightforward to calculate (using 9.7) the
values at whichk = 1 andk = 1.0004. Takingk, = 0.9996 and the radius of the sphere

asa = 6378km, (approximately equal to the semi-major axis of the Airy ellipsoid), we
find that thesasoscalelines are at approximatebly=180km andx = 255km respectively.
Figure 9.4 shows a plot of the scale factor as a function.ofWe shall prove that the
differences between the scale factors of TMS and TME are so small that the corresponding
plot for TME at any fixedy value is indistinguishable from Figure 9.4.
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x=|E-EO| in kilometres

Figure 9.4

Scale variation in TME

The corresponding result for TME is given by equation (8.66):

1 1 1 = T
=ko |1+ 2°Ky + —2 Ky + —2°K T=-— :
k(x,y) =ko |1+ 51 K2 + 512 B + 20 6 x Torn (9.9)
where theK coefficients are given in (8.68) as
K2 = ﬁl )
Ky =46(1 — 67) — 367 (1 — 16t7) — 2451¢7,
K¢=1, (9.10)

where3; andt; are evaluated at the footpoint latitude such thdt,) = y/ko andy is
related to the northing coordinate by equation (9.2) or (9.5) for UTM or NGGB respectively.

To simplify the comparison of the TMS and TME scale factors it is instructive, and
useful, to writeK, and K, in terms of the following parameter of ordet:

2 2
P=p-1=2-1=5 e (9.11)

The importance of this parameterisation is that it allows us to identify the way in which the
K-coefficients depend on the eccentricity of the ellipse. It was not introduced at an earlier
stage because the parametés much better suited to the derivations of all the coefficients.
For the non-trivial coefficients in the TME scale factor we have

Ky =147}
Ki=1+ 602 +n*9 — 24¢2) + 5 (4 — 24¢2) (9.12)

Clearly ase? — 0 the TME scale factor reduces to the TMS scale factor. Their difference
is given by terms of ordey?z 2 andn?2*: these are typically no more than—> and10~8
respectively so that Figure 9.4 is an adequate representation of the TME scale variation
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with z for any value ofy; calculated for the footpoint value corresponding,tdNote that
in working with the Redfearn series we must not assume that;therms are small: the
footpoint latitude may be of the ord80° for whicht;=tan ¢; ~ 5.7 so thatt? ~ 32).

Figure 9.4 is annotated with the scale factors for the extreme cases which may arise in
TME. For UTM the greatest extent in projection coordinate is on the equator where
334km andk reaches its worst value of almost 1.001—still perfectly acceptable in all prac-
tical applications. For NGGB the worst cases are the extremes of the East Anglia coast and
the Outer Hebrides whefe| is about 300km anéli~1.0007. The bulk of the NGGB grid is
within approximately 255km of the central meridian whgre- 1/<0.0004. Note that a typ-
ical map sheet corresponds to a small section of the plot. For example on my ‘local’ sheet of
the OSGB, bounded by E=316km and E=356km and close to the central meridian on which
E=400km, the scale varies froka=0.999686 on the west td:=0.999624 on the east.

Isoscale lines of TME

We will now investigate the lines on whidhis a constant and show how little they differ
from the straight lines=constant which we found for the TMS projection. To do this we
make a Lagrange inversion of the series (9.9) for the TME scale factor. Start by writing this
equation as

2 [k 1 LK 1 K
w= o (E 1) =gy it gene F=——  (9.13)
Ko \ ko

From equations (B.10-B.11), with= 22 andb, = 0, we immediately obtain the inverse

~9 4 2 2426 4 3 9.1
- — — —_— = e _1 . 4
T w <12 2) w ( 360K > w w % <k0 ) ) ( )

from which we can find: = ko1, and hencéE — E0), as a function of: for a given value

of N. We have used this result to calculate the eastings at whieH andk = 1.0004 for

the UTM projection at four particular values df for each of which we have first calculated
the footpoint from equation (9.3). From the fourth column we see that the deviation in

N footpoint k=0.9996 k=1.0 k=1.0004
9000000| 81°.05846848 0 180946 255887
6000000| 54°.14694587 0 180556 255336
3000000 27°.12209299 0 180010 254564

0 0°.00000000 0 179759 254208

UTM: value of|[E—E0| at whichk=0.9996, 1, 1.0004

eastings on thé = 1 isoscale is just approximately 1km over in a range of 9000km from
the equator to just over 8. The deviation of thé& = 1.004 isoscale is still under 2km.
Thus the isoscale lines are essentially parallel to the central meridian.
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Similar results can be calculated for the British grid:

N footpoint k=0.9996 k=1.0 k=1.0004
1200000| 60°.68382350 0 180369 255275
800000 | 57°.09116995 0 180302 255180
400000 | 53°.49645197 0 180231 255080

0 49°.89956809 0 180157 254976

NGGB: value oflE—E0| at whichk=0.9996, 1, 1.0004

Clearly the lines on whictt = 1 andk = 1.0004, which are shown in Figure 9.3, are
indistinguishable from straight lines parallel to the central meridian. Foktael locus
the change in eastings is only 212m over the full northings extent of 1200km.

To end this discussion of the scale factor in TME note that much of mainland Britain is
just within the scale variation of 0.9996 to 1.0004. Timaybe why these numbers were
adopted as suitable criteria for mapping in the first place. This is of course speculation and
we would be interested to hear of any evidence either way.

9.5 Convergence in the TME projection

When we first discussed convergence in Section 3.6 we observed that on any particular
meridian (on the TMS projection) the convergence, defined as the angle between grid north
and true north (the tangent to the meridian), must increase from zero at the equator to
at the pole. The same must be true for TME although we require only values up to the
northerly limit of UTM or NGGB. The following table shows the convergence for these two
projections for several latitude values—on a bounding meridian for UTM®&8°) and on

the extreme meridian intersecting the land area covered by NGGB.

Convergence along a projected meridian
UTM at \p+3° NGGB at PW
84°N 2°59" 1"W 60°N 4°19’' 58"E
80°N 2°57" 16"W 58°N 4°14' 36"E
60°N 2°35" 55""W 56°N 4° 8'55"E
40°N 1°55 46""W 54°N 4° 2'55"E
20°N 1° 1/37"W 52°N 3°56' 38"E
0°N 0° 50°N 3°50" 3"E

For UTM the values clearly approach the limiting value 6f\8hich would be attained
at the pole. For NGGB the specified meridian fsviiest of the central meridian and the
convergence clearly approaches this value at the northern extremity of the grid.
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The convergence varies only slightly over any one of the map sheets. For example exact
calculations give the convergence at the corners of the NGGB Edinburgh sheet bounded by
E=316km, E=356km, N=650km and N=690km as

Boundary of Edinburgh sheet
E N ~ ¥ E N
NW 316 | 690 | 1°7'14.94"E 35" 13.82"E 356 | 690 NE
SW 316 | 650 | 1°6'20.85"E 34’ 45.48"E 356 | 650 SE

Note that the variation of convergence from top to bottom is much less than the variation
from east to west. Similar figures are given at the corners of every map in the OSGB series:
the values at other points may be approximated by interpolation.

It is important to observe that convergeneg yalues are not vanishingly small and
they must be taken into account in relating an azimutht6 a grid bearing §) by the
relationa = § + «y discussed in Section 8.2. This correction is important in high accuracy
applications.

9.6 The accuracy of the TME transformations

One obvious test of the accuracy of the TME transformations is to start from given geo-
graphical coordinate&p, \), transform to projection coordinates with the direct Redfearn
series (8.59, 8.60) and then reverse the transformation with the inverse series (8.61, 8.63) We
should then be back where we started. Before doing so we must decide on our standard of
accuracy. We shall work to within Imm in the projection coordinates and to within 070001

in geographical coordinates. These accuracies are approximately equivalent, for we see
from (2.5) that 0.0001is equivalent to 3mm along the meridian and less than 2mm along

a parallel for examples calculated within the region of the NGGB (at latitudes fr6i-50
60°N). To cope with rounding errors we compute to two extra places of decimals. These
accuracies are purely to assess the mathematical consistency of our transformations for, in
practice, no survey claims accuracies better than 10cm. The following example shows that
this first test is satisfied with flying colours. Note that we use eastings and nothings rather
thanx andy, the projection coordinates. For NGGB they are related by (9.4, 9.5) and the
footpoint is to be calculated from (9.6).

Lat Lon E N
Redfearn—direct | 52°39’27.2531” 1°43'4.5177" 651409.903 313177.27¢

E N Lat Lon
Redfearn-Inverse 651409.903 313177.27052°39' 27.2531" 1°43'4.5177"

Another test is to assess the outcome of small changes in the inputs to the direct and
inverse series. Sticking to the same coordinates as above we perturb the geographical coor-
dinates by 0.0001in latitude, longitude separately and together: for the inverse we perturb
the projection coordinates by 0.001mm. The results are shown overleaf.
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Lat Lon E N
NGGB-direct |52°39'27.2531” 1°43’4.5177”| 651409.903 313177.270
Lat +0.0001” | 52°39' 27.2532" 1°43'4.5177"”| 651409.903 313177.273
Lon +0.0001” | 52°39' 27.2531” 1°43’4.5178"” | 651409.905 313177.270
Both together | 52°39’ 27.2532"” 1°43'4.5178"”| 651409.905 313177.274
E N Lat Lon
NGGB-Inverse 651409.903 313177.27052°39' 27.2531" 1°43' 4.5177"
E + 1mm 651409.904 313177.27052°39' 27.2531” 1°43' 4.5178"
N+ 1mm 651409.903 313177.27152°39' 27.2531" 1°43' 4.5177"
Both together | 651409.904 313177.27152°39' 27.2531” 1°43' 4.5178"

Thus we see that 0.000thanges induce a maximum change on the projection of no more
than 4mm: for the inverse transformation 1mm changes in the projection coordinates change
the geographical coordinates by no more than 0.0001

Now when Redfearn published his series he was ‘simply’ extending the series that had
been published earlier by Lee who had discarded terms smallextbat)\’e?, (z/a)%e?
and(z/a)%e? in the series for, 3, ¢ and\ respectively. Redfearn observed that the coeffi-
cients in Lee’s series were increasing rapidly, particularly at larger latitudes wherk
are not small, and consequently it seemed possible that some omitted terms might actually
be larger than the smallest ones retained. This in fact proved to be the case for two of the
terms omitted by Lee. Redfearn’s analysis to higher order makes clear which terms can be
safely omitted, as is done in many published expressions for the transformations.

To compare the size of the terms we again introduce the paranfetshich isO(e?),
defined in equation (9.11). The transformation equations are those of Section 8.10 but we
now write them in terms of eastings and northings using equations (9.4-9.6) and we also
replace\ by A — Ag.

E — FE0 = kov (9.15)

7!

_ X:s X5 2\ —
)\+§Wg+§W5+*W7 ,

Nt At A6pt Nyt —
N — NO + kom(¢0> = k‘(] [m(¢) + TV + 41‘/ W4 + 67]'/W6 + 81'/W8:| y (916)
z 73 o 7 —
MEN)=— — —Vg — — V5 — —— 9.17
( ’ ) C1 3!61‘/3 5!61‘/5 7‘ C1 V77 ( )
S(E,N) = ¢y — 2oty 5451151[] 2%t T84t Us. (9.18)
IS 2 T 6 ¢ g % W
where

~ . F—-FO N — NO

A= (- doe, 7= mon) = N0 g (@.19)
kov1 ko

and the coefficients, given in equations (7.51-7.53), are now written in termaso$hown
overleaf.
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The significance of the vertical rules in the rewritten coefficients will be discussed shortly.

Wy =1—1t2 172
Wi=5—1+92| + 4n*
Ws =5 — 18¢2 + t4 + n2(14 — 58¢2) | +7%(13 — 64¢2) + n5(4 — 24¢2)
W = 61 — 58t + t*| + 1%(270 — 330¢2) + * (445 — 680t2)
+ 15(324 — 600t2) 4 15(88 — 192t?)
Wr = |61 — 479¢% + 179¢* — 6
Wy = | 1385 — 3111¢2 + 543t4 — ¢ (9.20)

Vs =142 + 72
Vs = —5— 2863 — 24t | — (6 + 813) + (3 — 4t3) + nf (4 — 243)
Vi = 61 + 662t2 + 1320t + 720¢9 | (9.21)

Us=—5-3t3 — i (1 - 913) | +4ni

Us = 61 4 90¢2 + 45¢1 | + n2(46 — 2522 — 90t) + 5 (=3 — 66¢2 + 225¢3)
+n%(100 4 84t%) + 1} (88 — 192t)

Us = | — 1385 — 3633¢2 — 4095¢t* — 1575(8 (9.22)

As an example we consider the direct and inverse transformations for a location in
the Outer Hebrides witlh = 58°N and A = 7°W and projection coordinates given by
E =104647.323m and/ =912106.244m. This point has about the greatest value-ofg
that we can get in the NGGB and moreover it is about as far north as we can get so the value
of tan ¢ in the coefficients is not smalt£1.6). In the tables shown overleaf all the sub-
terms have been displayed according to their power péssentiallye?, and their power of
either\ or 7 for the direct and inverse series respectively.

In these two tables the upright rules correspond to those in the expressions for the co-
efficients in (9.20). We now see that they demarcate the significant terms: all terms to the
right of them are negligible and hence we can drop these terms from the series with im-
punity. Since the chosen point was the most extreme for NGGB we can obviously neglect
these terms for all applications of NGGB.

Thus, at the end of the day, after much hard graft, we have thrown away almost all of
the higher order terms except for the seventh order termyinin the inverse series fox.
Clearly terms of orde© (e?(xz/a)”) would also be negligible so at last we have justified
the use of the spherical approximation in calculating the higher order terms. Note that we
could not have assessed the size of the higher order terms without working them out!

One can of course use the Redfearn series as they stand for they are simple to encode
on any computer. Remember, however, that when these series were first developed it was
imperative to simplify the working as much as possible for hand(-machine) calculations.
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In: ¢ =58° A= —-7° Out: E =104647.323m

n° n? n* n® n®

A\'|104482.704
M| 164425  -0.199

\° 0.389  0.00§ 6.0E-06 4.3E-09

A| |4.9e-06

In: ¢ =58° A =—T7° Out: N =912106.244m
7’ N n* n° n®

A\1901166.42(
A?| 10935.05(

At 4753  0.03} 2.8E-05
Xl -0.011] -15E-04 -6.4E-07 -1.1E-09 -7.1E-13
28| |-1.6E-05

In: £ =104647.323N =912106.244 Outp =58° 0" 0.0000”

70 Uit ni n? nt

z0| 58° 5'53.7728"

z2 —5'54.5718"

z4 0.8042” — 0.0025"| -8.9E-07

z6 — 0.0027”| 1.0E-0% -2.1E-08 -9.4E-12 2.3E-14

z8 1.1E-0%

In: E =104647.323N =912106.244 Outh =—7° 0’ 0.0000”
Ui 0 n n n

Ll —7° 0'39.4213"

w

39.5711" 0.0120”
— 0.1626"”| -3.4E-08 -1.8E-08 -2.6E-1¢
0.0008"

ot

N}

)| 8| 88

Lee would no doubt have had this in mind when he dropped the sixth order terms in his
calculations. To be exact, of the required terms he dropped the tei® iim the direct
series fory, the term in(z/a)® in the inverse series fap and the term in(z/a)” in the
inverse series fok; at the same time he included the terntinfa)®e? in the inverse series

for A although we now see that it is negligible.

The approximations used in Snyder are similar but he retains the tgfi—252t2) in
Us; we have shown this is negligible for NGGB but it is required at the higher latitudes that
we meet in UTM. (Comment: Snyder us€$ explicitly in some coefficients. To compare
with the expressions above first &t = 12 sec?¢ = n?[1 + t2)).
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9.7 The truncated TME series

We have stressed that although no penalty is incurred by using the full Redfearn series
as summarised in Section 8.10, the coefficients truncated at the vertical rules in equa-
tions (9.20-9.22) will be perfectly adequate. Dropping the small terms equations (9.15—
9.19) become

~ A3 £\
E(¢,\) = E0+ kov | X + ng + 5,W5T] , (9.23)
XQI/t X‘Lut X6vt

N(,A) = NO+ ko [m(¢) — m(d0)] + ko | =5~ + Wi + =W |, (9.29)

z 73 e —
MEN)==" - ylI'- — ylI'_ — 9.25
(B, N) c1 3!01V3 5l¢cy Vs e Vi, ( )

~2 t =4 t ~6 t
H(E,N) = ¢ — 200 _ Thitigr  Tbibyr (9.26)

2 4! 6!
where
~ . E—F0 N — NO
A== Xo)e, T = m(¢y) = + m(¢o), (9.27)
kOVl k()

and, as usuat=cos ¢, t=tan¢, B=v(¢)/p(¢)from (5.53) and the ‘1’ subscript denotes
a function evaluated at the footpoint latitude.

The truncated coefficients follow from equations (9.20-9.22)
Wi =1-t+n
Wi =5—t+9°
WE =5 —18t% + t* + n*(14 — 58t%)
Wd =61 - 58> + ¢! (9.28)

Vil =1+ 23+ 0%
V= —5 — 283 — 24t}

Vo' = 61+ 66262 + 1320t + 72015 (9.29)
Ui = =5 =3t —ni(1 - 9t])
U¢ = 61+ 90t5 + 45t (9.30)
where 9 9
S L L Y (9.31)
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9.8 The OSGB series

The published form of the series used by the OSGB uses a different notation for the trun-
cated series of the previous section. First use equations (5.78, 5.80) to set

M = ko [m(¢) — m(do)] (9.32)
- kob[ <1+n+in2+in3> (p—co) — <3n+3n2+2§n3> sin(¢—ao) cos(p+o)

+ <1§)n2+185n3> sin 2(¢p—¢o) cos 2(p+¢o) — (;’Zﬁ) sin 3(¢p—a¢o) cos 3(p+¢o)

wheren is defined in equation (5.5) @8 — b)/(a + b).
Equations (9.24), (9.23), (9.26) and (9.25) may be written as

N =141\ =X0)% + 1A= Xo)* 4+ HA (X = X)S (9.33)
E=FE0+IV(A—X)+V(A—X)>+VI(A— X)), (9.34)
¢ = ¢1 — VI (E — E0)> + VIl (E — E0)* — IX(E — E0)S, (9.35)

A= X+ X(E — E0) — XI(E — E0)? + XIl (E — E0)®> — XIIA (E — E0)", (9.36)
where¢; must be calculated from equation

y N-—NO

m(d1) = —

ko ko + m(¢o) (9.37)

by the methods of Section 5.9.

If we introducer = kg andp = kgp the coefficients I-XIIA may be written in terms of
the truncated coefficients (9.28-9.30) as

~ ~ 3wT ~ 5wT
| = M + NO =2 N = 25 ma = 25¢ %
2 4! 6!
~ 3wT ~ 5wT
IV = e v =" vl =2
3! 5!
t —t,UF t,Ur
VIl = =% vin = ~1Y% X = Y6
20111 4 p1vy 6!p177}
1 T _yr VI
X=— Xl = ‘fﬁ,) Xl = 2 XIA = —L
vicl 3lvPeq 5lv7eq Tvieq

and, as usuat=cos ¢, t=tan¢, B=v(¢)/p(¢)from (5.53) and the ‘1’ subscript denotes

a function evaluated at the footpoint latitude. The OSGB publication exhibits the above
formulae without the tildes on andp because the definitions ofandp in that publication
already absorb a factor &f.
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The oblique Mercator projection

10.1 Introduction and summary
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Geodesics on the sphere and ellipsoid

11.1 Introduction and summary

This chapter is a not directly concerned with the Mercator (or any) transformation, rather

it tackles the problem of finding geodesics, curves of shortest length, between points on a
sphere and on an ellipsoid. To be precise we solve the following two problems on both the
sphere and the ellipsoid.

1. The direct problem.

Define a geodesic by an initial azimuthh at a starting pointP; with geographic
coordinates(¢1, A\1). Find the coordinate$ps, A2) of a point P, at a distances
measured along the geodesic; find also the azimytbf the geodesic abs.

2. The inverse problem

Given the coordinate§p;, A1) and(¢2, A2) of two pointsP; and P find s, the geo-
desic distance between them, and alg0 as, the azimuths of the geodesic at the
points.

Note that we need only relative longitudes so we calculate anty A — A; in the direct
problem; for the inverse problem onlyis given.

For the case of the sphere we shall see that we can derive the results (a) by spherical
trigonometry or (b) by integrating in closed form simple first order differential equations
describing the geodesics. For the ellipsoid there is no equivalent to spherical trigpnome-
try and we have no option but to integrate the differential equations; moreover, since the
eguations cannot be integrated in closed form we must resort to series expansions.

The results for the sphere have been long established and approximations to the ellipsoid
problems have been presented by many authors over the last 150 years. The results we
present here were given in the Survey Review by Vincenty. (See bibliography)

THIS CHAPTER IS IN PREPARATION
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Appendix

Curvature in 2 and 3 dimensions

A.1 Planar curves

A straight line has zero curvature. The curvatuteof a general curve in the plane is
defined as the rate of change of the direction of its tangent with respect to the distance
travelled along the line:

_df
=
If we are given the equation of the curveas- f(z) with respect to Cartesian axes then it
is natural to choose the-axis as the reference for the direction of the tangent.

K

(A1)

The geometry of the small inset in the figure

shows that y
dy _dzx
tanf = Ir =y (), cosf = I
(A.2)

Differentiating the first of these statements by
s and using the second gives

do  d[y'(z)] dx
2 _— = = " _ = +
sec”f ds ds y(@) ds X

=" (x) cos 0. (A.3)

Figure A.1
Now sec § = /1 + tan?f = £+/1 + 2 so we obtainif/ds and

y" () d
—_— DASH = — A.4
[1+y2]3/2 S (A4)

K = %

The choice of sign is a matter for convention in every case. We shall illustrate this point
immediately.
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The curvature of a circle

For a general circle of radius at the origin we haver? + y?> = a? so that on the two
semicirclegy > 0 andy < 0,

/ :F.’L' ! 2
ya) = Ve -t Y@= o ) =
Substituting these values in equation (A.4) we see that the curvature of the upper semicircle
is kK = +(—1/a) whilst for the lower semicircle: = +(1/a). Now it is conventional to
define the curvature of a circle to Ipesitiveso we must choose the negative sign in the
definition for the case of the upper semicircle and the positive sign for the lower; with these
choices of sign we have a constant curvature 1/a. Therefore the curvature of a circle

is the inverse of the radius and vice-versa.

Fa

T (A.5)

The osculating circle and the radius of curvature

The particular circle which touches the curvela(Figure A.1) and also shares the same
curvature at that point is called the ‘osculating circle’ (osculating=kissing) or the ‘circle of
curvature’. The radius of this circle definés the radius of curvature of the curve at that
point. Clearly

R=1 (A.6)

Curves in parametric form

The previous results related to a curve in two dimensions described by a single furietjon

in Cartesian coordinates. We now consider the situation where these Cartesian coordinates
are parameterised by two functionsigthat is the position of a point on the curve is written
asr(u) = (:U(u), y(u)). We shall investigate three types of parameterisation: (1) the
parameter is assumed to be perfectly generat hecessarily the distance along the path;

(2) the parametds taken as the arc length (3) the parameter is taken as the angle between

the tangent and the-axis.

Case 1:Arbitrary parameterisation:(u), y(u). SetDOT = %
dy _ g
/ —_— —_
Yy (‘IE) - d.ﬁv fI:7
d /y\ du  Zy—yx
1" BT - Wheko i
() = du (a:) T a3
1 ijj — yi d
s g = I8 DOT= — | A7
R & [i2 + 42]3/2 du (A7)
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Case 2:Special parameterisation: — s. Givenz(s), y(s). SetDASH = %

Sinces is the arc length we havér? + dy? = ds? and consequently’” + y/* = 1.
Therefore (A.7) becomes

1 d
R k =2y —ya” DASH = Ts (A.8)
Case 3:Special parameterisation: — 6. Givenx(6), y(0). SetDOT = d%
Sincef is the angle between the tangent and:tkexis we havean § = % =y/z
Differentiating with respect té givessec? = it ;yx.
X
-2 :2
But we also haveec? § = 1 + tan2 6 = — ,J;y
X

Therefore we must have ijj — & = > + 9> so that (A.7) becomes

1 1 d

— =Kk =-——— DOT= — A9

R K [i2 + 42]1/2 do (A-9)

Note that this result follows directly from equation (A.1) sir%ele = ds = [dz®+dy?]"/>.

Curvature of the ellipse

The Cartesian equation of an ellipse is

Stm=1 (A.10)

where the semi-axes are related to the eccentricity by

@)
c
>

a1 — e2. Now the ellipse may be obtained by scaling the M A
auxiliary circle by a factor 06/« in they direction. Since an
arbitrary pointP’ on the circle iSa cos U, asin U) the cor-
responding point on the ellipse B(acosU, bsinU). We
call U the ‘parametric’ or ‘reduced’ latitude in cartography
and the ‘eccentric anomaly’ in astronomy.) Figure A.2

We calculate the curvature from equation (A.7) setting:

xr= acosU, y= bsinU,
T = —asinU, y= bcosU,
= —acosU, = —bsinU, (A.12)
giving
1 V1 —e2
. +ab _ ¢ (A.12)

(a2 — (a2 — b2) cos? UPP2 ~ a[l — e2cos2 U3/2
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A.2 Curves in three dimensions

First consider two neighbouring point8(s) and@(s+ds), on a curve parameterised by its
arc lengths (Figure A.3a). The chord length between these points is giveisby= dr - or.
The tangent vector & is the limit of or /ds and therefore has the properties

t=r, t-t=1 t-t' =0, (A.13)
where the last follows by differentiation of the second.

©

Figure A.3

Consider the tangents at neighbouring points (Figure Af3k);andt(s+ds) = t+dt are
compared in the third figure by bringing them together at some @gintangent vectors
are unit vectors so that| = |t 4 0t| = 1; therefore in the limit obs — 0 we see thaft is
in the direction ofn, a unit vector normal te and in the ‘osculating plane’ defined by the
two vectorst(s) andt(s + ds). Furthermore, if the angle between the unit tangent vectors
is 06 then ashs — 0 we must haveédt| = 66. Consequently
ot do
t' = lim — = —n = kn. A.14
bo00s  ds % ( )
The vectom is called the principal normal to the curve and the curvatyris defined as
for planar curves. We can invert this relation and write
1 1
n=—-t =-r" (A.15)
K K
Note thatn is defined to be a unit vector; on the other hahi$ not a unit vector, its length
is equal to the curvature. Sincet - t' = 0 we must havea - t = 0.

Now introduce the unit ‘binormal’ vectdb, defined so that it
forms a right-handed orthogonal triad witlandn. Therefore

b=t xn, (A.16)

txn=b, nxb=t  bxt=n = (Al7) Figure A.4
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Torsion and the Frenet—Serret formulae

Sinceb is a unit vector, differentiation givds - b’ = 0. Furthermore if we differentiate the
relationt - b = 0 we get

t'-b+t-b =0. (A.18)

Now sincet’ = xn the first of these terms must vanish so we must havé’ = 0.
Consequentlyp’ is perpendicular to bothandb and it is therefore a vector in the direction
of n. The vectom’ is not a unit vector and its magnitude is defined tarbthe ‘torsion’ of
the curve. We choose to set

b’ = —rn. (A.19)

The torsion of the curve is a measure of the rate of rotation of the vdsi@sd hencen,
about the tangent vector asncreases. The negative sign associates a ‘right-handed’ rule
as part of the definition.

We have expressions for the derivativeg @ndb in equations (A.15) and (A.19). We
now evaluate the derivative effromb x t:

n=b xt+bxt' =—-nxt+bx(kn)=r7b-—kt. (A.20)

This equation together with the derivativestoindb constitute the set of Frenet-Serret
relations:

t' = kn,
n' = 7b — kt,
b’ = —7n. (A.21)

These equations show that the form of a curve in three dimensions is essentially determined
by the two functions:(s) andr(s) and an initial orthonormal triad.

A.3 Curvature of surfaces

At any point on a surface we can define the curvature of a line on the surface passing
through that point. Rather than build up a large part of differential geometry we shall give
elementary proofs of two important results that we need.

First consider those curves which are defined by the intersection of a plane with the sur-
face. The mostimportant case is a plane which contains the nd¥ratithe pointP; such a
plane defines a ‘normal section’ of the surface. We shall consider all the normal sections at
a given point and investigate the curvaturé’aif their intersections. The principal result is
that the maximum and minimum curvatures arise on two normal sections at right-angles to
each other; these are the ‘principal’ curvatures which we will denote,landxs. Euler's
formula gives the curvature on any other normal section in terms of the principal curvatures.

The other main result that we need is Meusnier’'s theorem. This relates the curvature
on a normal section to the curvature of the sections made by planes oblique to the chosen
normal planei.e. sharing the same tangentfat It is convenient to prove this theorem first.
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A.4 Meusnier’'s theorem

Without loss of generality we choose axes with the or{@iat an arbitrary point on a surface
and such that they-plane is tangential at the point. Consider the family of planes which
contain the tangent directed along thaxis. Each plane intersects the the surface in a plane
curve; letg(x) be the curve on the normal plane am¢x) on an oblique plane inclined at
an anglep to the normal plane. Ik, R denote the curvature and radius of curvature at the
origin of g(z) andw(x) on the normal and oblique planes repectively, then

Roblique = S€C Qb Knormal, Roblique = COs d) Rnormal' (A22)

The choice of coordinates implies that= f(x,y),
the ‘height’ of the surface above they-plane, is such
that f(0,0) = 0 and has partial derivatives,(0,0)=0
andf,(0,0)=0. The Taylor series at the origin is then

1 1
z= f(z,y) = §A:1£2 + Bxy + §Cy2 +---, (A.23)

with A = £,,(0,0), B = f;,,(0,0) andC = f,,(0,0).

The intersection of thez-plane ¢ = 0) and the sur-
face is the curvg(x) which, nearP, is given by

g(x) = f(z,0) = éAac2 + O(a3). (A.24)
The curvature ofj(z) at P follows from (A.4)

9" (z)
normal — =A. A.25
" : [1 + (91)2]3/2 x=0 ( )

On the oblique plane @ we havez = f(z,y) with
z = wcos ¢ andy = w sin ¢. Therefore

A 2 C 2
w cos p=f(x, w sin ¢):T$+Bacw sin qﬁ—i—Tw sin?¢

It is clear from this equation that for smalland arbi-
trary ¢ we must haveo(x) = O(z?). (For suppose on
the contrary thatv(z) = O(z), then the LHS of the pre-
vious equation would b&(x) and the RHS would be
O(x?)).

P/
/=
\ (%,y,0)
N(x,0,0) z
N M

1
w(z) = sec¢(§Ax2 + O(:c?’)). (A.26)
. . . Figure A.5
Equations (A.26) and (A.24) give Meusnier's theorem
w//
Roblique = W - = Asec ¢ = sec ¢ Knormal- (A.27)
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A.5 Curvature of normal sections

We now consider the set of planes which have as axis
the normal to the surface at a given point. The intersec-
tions of these planes with the surface define the ‘normal
sections’ at that point. Once again we take the given
point as the origin of our coordinate systems and de-
fine the tangent plane at the origin to be theplane.
Therefore the equation of the surface may be taken as
in the last section:

1 1
z = f(x,y) = Qsz + Bzy + 50y2 +---. (A.28)

Now one of the planes in the normal set is theplane.
This plane was also the first we considered in the proof
of Meusnier’s theorem. It intersects the surface in the
curve g(x) which, in the neighbourhood of the origin,
is given by

1 f
g(z) = f(x,0) = iA:cQ + O(a%), (A.29) -
x X’ »

and, from equation (A.25), we know that its curvature )
at the origin is equal to A. Similarly the curvature of the Figure A.6
section by theyz-plane is equal t@”.

Principal Axes

We exploit the freedom to choose any pair of orthogonal lines as axes irythtane. If
newz'y’-axes are rotated from the original by an angléhen we must set

x=cosax —sinay, (A.30)

y=sina 2’ +cosay. (A.31)

Abbreviatec = cos o ands = sin o and setr = cx’ — sy’ andy = sz’ + ¢y’ in the equation
of the surface (A.28). In terms of these new coordinates

1 1
z=h(',y) = §A(cx’—sy')2 + B(cx'—sy')(sa'+cy') + 50(3x'+cy’)2 +---. (A32)

Now the coefficient of the'y’ cross term is equal to- Asc + B(c? — s%) + Csc] and this

will vanish if (A — C) sin2a = 2B cos 2« or tan 2o = 2B /(A — C). There is always a
solution fora and therefore we can always rotate axes so that the equation of the surface
may be taken without a cross term. This definespthiecipal axesin the tangent plane at

the given point.
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Curvature in an arbitrary normal plane: Euler’s formula

We now re-interpret Figure A.6 by assuming that the principal axes have been found and
they have been chosen as thaxis andy-axis. Therefore the equation of the surface with
respect to the principal axes in the tangent plane is of the form

1 1
= f(xvy) = Qﬁ'le + 51{23/2 +eey (A33)

wherex1, ko could be related tod, B, C. On the normal plane which includes the
principal axis we havg = 0 andz = (1/2)x;2? so that the curvature of the sectionsig
Similarly x4 is the curvature of the normal section which includeshincipal axis.xq
andk- are called theorincipal curvatures of the surface aP.

We shall now find the curvature of the section made by a normal plane which makes
an arbitrary anglex to one of the principal axes, say theaxis. Once again we rotate
axes, away from the principal axes, so that the néwxis lies in the chosen plane and
y’ is orthogonal to it. This is achieved by exactly the same rotation as before, namely
x = cx’ — sy andy = sz’ + cy’. The equation of the surface now takes the form:

1 1
z=h(a',y) = §/<;1(cx' — sy’ )2 + 5/432(8.7}/ +ey) 4+ (A.34)
Now the chosen plane at the anglés the plane with)’ = 0 in the new coordinates so its
section with the surface is given by
1 1
p(z") = h(2',0) = iﬁl(ca:')2 + 5&2(8:6’)2 +---

1
= 5:{:’2(/11 cos’a + kosinZa) + - - . (A.35)

We now evaluate its curvature at the origin using equation (A.4), giving:

EULER'S FORMULA k() = k1 cos? a + Ky sin? a (A.36)

for the curvature of the normal section made by a plane making an angith one of the
principal normal planes.

Without loss of generality let us takg > k5, then we have

k1 — k(a) = (k1 — kg)sin?a > 0, (A.37)
r(a) — kg = (k1 — Kg) cos® a > 0. (A.38)
k1 > k(@) > Ka. (A.39)

Thus we have proved that the curvatures of normal sections at a point are such that the
minimum and maximum values, the principal curvatures, are associated with orthogonal
planes and the curvature on any other plane is given by the Euler formula. Note that we have
not provided any way of calculating the curvature for an arbitrary surface for in general we
do not have equations for the surface in the form of (A.28). The general study requires the
machinery of differential geometry (see Bibliography) but for surfaces of revolution such
as the ellipsoid we shall find that this not required.
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Two definitions of average curvature

. . 1
The mean curvature at a point on a surface is H = 5(/4;1 + K2). (A.40)
The Gaussian curvature at a point on a surface(s= /k1 k2. (A.41)

These definitions are useful in various ways—for example, when we seek to approximate
the surface of small part of the ellipsoid by a sphere.
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Appendix

Lagrange expansions

B.1 Introduction

We wish to investigate the inversion of a finite series such as
w=z+az’ +a3z® +aszt +as2° - - (B.1)

where bothz andw are assumed to be small, less than 1, whilst the coefficients are of
of order unity. The series we shall meet in the cartographic applications will typically be
Taylor series truncated after a few terms. Now sigte< z for z < 1 andn > 1 we must
havez ~ w and we might expect it to be represented by a series of the form

2 = byw + bow?® + b3w3 + byw* + bsw® + - - - . (B.2)

One way of finding the coefficients is to substitute the series fioto every term on the

right hand side of (B.1) and compare coefficientssfon both sides. This is demonstrated
explicitly in the next section. Fortunately a more general method exists, namely the La-
grange expansions defined in Section B.3. This is essential for the inversion of the eighth
order series that we shall encounter.

A second category of problem is illustrated by a series of the form
Ww=2z4+co8in2z 4+ c4sin4z + cgsinbz + - - -, (B.3)

where we might have andw asO(1) whilst the coefficients;,, are small. The method of
Lagrange expansions will show that there is an inverse given by

z =w + dasin 2w + dy sin4w + dg sin 6w + - - - . (B.4)
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B.2 Direct inversion of power series

The power series may be solved simply by back substitutienye substitute: from (B.2)
into the terms on the right hand side of (B.1) and compare coefficients &f we retain
only terms up taO(w*) we have

w = (byw+byw? +bsw3+bsw?) + agw? (b1 +byw+bzw?+ - - - )?
+ azw? (bi+bow—+ -+ )? + agw (by+ -+ )*,
= (brw+byw?+bgw® +bsw?) + agw? (b+2b1byw+b3w?+2b1bsw?+ - - - )
+ a3w3(b?+3b%b2w—|— )+ a4w4b‘1l + O(w5).

Comparing coefficients gives

L, 1=by,

w

w? O:b2+a2b%,

IR 0 = b3 + 2a2b1bs + agbi’,

wh 0 = by + az(b3 + 2b1b3) + 3azbiby + aysbi.

These equations are solved in turn to give
by =1, by = —as, b3 = —az + 2(1%, by = —a4 + basaz — 5a§. (B.5)

This method is straightforward but becomes progressively harder as we gotp
terms. Moreover the method is inapplicable for the trigonometric series. Fortunately there
is a more general and elegant approach.

B.3 Lagrange’s theorem
The general form of the series (B.1, B.3) is

with | f(2)| < |2| andw = 2. The theorem of Lagrange states that in a suitable domain the
solution of this equation is

o (—1)k (k=1)
p=wty ( kll) (lew) [f (w)] (B.7)

The proof of this theorem will be given in the last section of this appendix.
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B.4 Application to a fourth order polynomial

Consider the finite polynomial

W=z~ az® + a3z + asz?, (B.8)
which is a case of equation (B.6) with

flz) = asz® + asz® + a2t

We now apply the theorem with

f(w) = azw? + azw® + agw?.

In evaluating the inverse we shall only retain terms uptan the series for (although the
Lagrange expansion is infinite). Therefore in evaluating the payier)]* we need retain
only those powers ofv which give terms no higher tham* after differentiating(k—1)
times. For exampléf(w)]? has terms of ordew®, w7, ... w!? but only the first of these
terms contributes after differentiating 2 times. No terms of otefearise from[f(w)]* and
higher powers. Therefore we keep only

f(w) = agw? + azw® + agw,
[fw)? = w'(a3) + w’(2a5a5) + -,
[fw) = w'(a3) +---.

flw) = agw? + azw® + agw?,

S DU (w)]? = 20°(a3) + 5w (azag) + -,
—D?[f(w)]® = 5w(ad) + - -

Substitute in Lagrange’s expansion:

2= w f(w)+ D)~ g Df@)P +

The final result is
2z =w —w? [ag] — w? lag — 2ag] —w! las — bayas + 5a§] — (B.9)

The coefficients are in agreement with equation (B.5).
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Modified fourth order polynomial

It will be convenient to consider a modified version of equation (B.8) with coefficients are
of the forma,, = b, /n!. In this case the above equations become
_ o b2y b3 g sy
w—z+iz —i—gz —I—EZ, (B.10)
P2 o P33 P4 4

F=W o oWt = Tk + e (B.11)
where thep-coefficients are given by
p2=by,  ps=Dbs—3b3,  py=bs— 10byby + 15b3. (B.12)

Alternative notation

For the applications to cartography it is convenient to use the following notation for the
direct and inverse series:

by o by b
2= CH O ¢ (B8.13)

_, P22 P33 P44,
(==% o1 2 a1 Tk + (B.14)

B.5 Application to a trigonometric series

Consider equation (B.6), that is
w(z) =z + f(2), (B.15)

with f(z) defined by the following finite trigonometric series:
f(2) =basin2z + by sindz + bg sin 62 + bg sin 8z, (B.16)

where the coefficients,, are small enough for the conditidfi(z)| < z, w to be valid;
note that we are assuming thatandz are of order unity. For the applications we have in
mind we shall havéb,| = O(e™) wheree is the eccentricity of the ellipsoid. In deriving
the inversion we shall truncate the infinite Lagrange expansion at terms ofedrdlens we
retain terms proportional thy, by, b2, bs, baby, b3, b, babg, b3by, b3, by and drop higher
powers.
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In the following steps we make use of several trigonometric identities from Appendix C.
f(w) = besin2w + by sin 4w + bg sin 6w + bg sin 8w,

w)]? = b2 sin?2w+2b9by sin 2w sin 4w-+b? sin24w+2b2b6 sin 2w sin 6w + - - -
2 4
1
= 5()%(1 — cos 4w) + baby(cos 2w — cos 6w)
1
+ ib?l(l — cos 8w) + babg(cos 4w — cos 8w) + - - -
[f (w)]? = b3 sin® 2w + 3b3by sin” 2w sin 4w + - - -

1 3
= 1b§>(3 sin 2w — sin 6w) + Zb§b4(2 sin 4w — sin 8w) + - - -

1
[f(w)]* = b3 sin? 2w + --- = §b3(3—4cos4w—|—0058w)—|—--- .

Calculate the derivatives
f(w) = bgsin 2w + by sin 4w + bg sin 6w + bg sin 8w,

1
ED[f(w)]2 = b3 sin 4w + boby(— sin 2w + 3 sin 6w)

+ 2b% sin 8w + 2bybg(— sin 4w + 2sin 8w) + - - -
1 1
gDQ[f(w)]?’ = Ebg(— sin 2w + 3sin 6w) + 4b3by(— sin 4w + 2sin 8w) + - - -
1
4!

4
DS[f(w)]4 = gbé(— sindw + 2sin8w) + - - - .
Finally, substituting into

1

2= w— f(w) + D) ~ 3 D) + D))+

and grouping terms according to the trigonometric functions gives

z = w + dasin 2w + dy sin 4w + dg sin 6w + dgsin8w + - - -, (B.17)

where
dy = ~by —boby + 303
dy = —by + b3 — 2bybg + 4b3by — %bé,
dg = —bg + 3baby — gbg,

ds = —bs + 2b3 + 4babg — 8b3by + gb‘; (B.18)
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B.6 Application to an eighth order polynomial

We now invert a series of the form
w=z+ a2’ +a3z® + aszt + a52° + a2’ + a7z” + ag2®. (B.19)

retaining only the terms up t@® in the series for. This problem is a trivial generalisation

of the derivation for the fourth order series developed in Section B.4, only the algebra is
a little more involved. We sef(w) = asw? + azw?®--- in the Lagrange expansion and
evaluate the powers df (w)]*; recall that we need retain only those powerswoivhich

give terms no higher tham® after differentiatingk — 1 times.

flw) = asw? + azw® + agw? + asw® + agw® + arw’ + agw®,
[f(w)? = w'(a})
5(2‘12@3)

w6(2a2a4 + a3)
w’ (2a9a5 + 2a3a,4)
w®(2aqa6 + 2aza5 + a?)
w? (2aqa, + 2asaq + 2a,4a5) + O(w'?),
[f(w)]3 = w’(a3)

7

[ed]

(3a3as)
8(3a2a4 + 3a5a3)
+w®(3aas + Gagaga, + a3)
+ w'(3a3ag + 6asasay + 3azai + 3a3ay) + O(w'),
[fw)] = w®(a3)
+w”(4a3a)
0(4a3a, + 6a3a3)
w' (4a3as + 12a3a3a, + 4a5a3) + O(w'?),
[f(w)] = w'%(a3)
" (5a3a3)
w'?(5a3a, + 10a3a3) + O(w'?),
[f(w)® = w'*(a3)
+w'(6a3a3) + O(w'),

[f)]" = w'(a) + Ow'),

o
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Evaluate the derivatives, (writind for d/dw):

fw) = asw? + azw® + agw* + asw® + agw® + arw” + agw®,

D@ = +20%(a3)

+ gw4(2a2a3)

+ 3w’ (2aqa, + a3)

+ gw6(2a2a5 + 2aza,)

+ 4w’ (2aqag + 2aza5 + a?)

+ gw8(2a2a7 + 2a3a4 + 2a4a5) + O(w?),
D) = + 5w (ad)

+ 7w’ (3a3a3)

28
+ ?w6(3a§a4 + 3a5a3)

+ 12w" (3a3a5 + 6ayaza, + al)
+ 15w¥(3a3ag + 6asa5a5 + 3aya] + 3ajay) + O(w?),
1
LD )] = + 1)
+ 21w (4a3as)
+ 30w (4a3a, + 6a3a?)
165
+ ng(lla%ag) + 12a3a5a, + 4aqa3) + O(w?),
1
D ()] =+ 42u0(a})
+ 66w’ (5a3as)
+ 99uw®(5a3a, + 10a3a3) + O(w?),
1
SDPF ()] =+ 13207(af)
' 429
+ 7108(6@3@3) +0(w”),
1
S DOLf ()] =+ 429u5(a3) + O(w”),

1
D) = Ow?)

Substitute the above in the Lagrange expansion:

2= w— f(w)+ 5 DI W) ~ S DF@)P + D)l — 5 D[ (w)]?
+ D) — =DO[f ()] + = D[ (w)]® (8.20)

6! 7! 8!
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Final result for basic eighth order series

The inverse of the series

W=z az® + a3z + a2t + a2’ + ag2® + arz” + agz®, (B.21)

—30(4a3a,+6a3a3)+330a3a5—132a5]
—u® [ag—9(a2a7+a3a6+a4a5)—|—15(3a2a6+6a2a3a5+3a2ai+3a§a4)
—165(asas+3a3a3a,+aq9a3)+99(5a3a,+10a3a3)
—1287a3a3+429a] (B.22)

B.7 Application to a modified eighth order series

Replacinga,, by b,,/n! gives the following pair of inverse series:

_ b b33b44 b55b66 b77b88
_ _12 2_22 3_12 4_@ 5_@ 6_& 7_@ 8
z=w o1 w i w 1 w ] w ol w o w S w®. (B.24)
where
p2=[bz]

= [b3—3b3]

[b4—10bybs+15b3]

= [b5—(15byb4+10b3)+105b3b5—105b3]
=

= [

be— (21bybs+35b3b, ) +(210b3b,+280b,b3) —1260b3b3+945b3
by —(28bybg+56b3bs4-35b3 )4 (378b3bs +1260bybs by +280b3 )
—(3150b3b,+6300b3b3)-+17325b3b5— 103956 |
ps = [bs—(36byby+84b3bg+126b,b5)
+(630b3bg+2520by b3 bs+1575byb3+2100b3b,)
—(6930b3b5+34650b3b3b,415400b5b3)
+(51975b3b,+138600b3b3) —270270b5b5+135135b] (B.25)

Comment: these results are extended to 12th order series in papers by (a) W E Bleieck and
(b) W G Bickley and J C P Miller. See bibliography.
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B.8 Application to series for TME

In evaluating the inverse of the complex series that arises in the derivation of the transverse
Mercator projection on the ellipsoid (TME) we have the following coefficients

by =1is by = AWy by = isc®W, by = AWy
b = i sc* Wy by = AWy bs = i scSWy (B.26)
wherei = /—1, s = sin¢, ¢ = cos ¢, t = tan ¢ and thelV functions are of the form
Wy = — t*
Wy =46+ 8 —t*
W5 = 46%(1 — 6t2) + (1 + 8t2) — 26t +
We = 844 (11 — 24t%) — 2833(1 — 6t2) + B%(1 — 32t%) — 23t + *
Wy = 61 — 479t + 179t* — ¢
Wy = 1385 — 3111¢2 + 543t* — 5, (B.27)
whereg is defined in equation (5.53). Substituting for theoefficients in (B.25) gives
pe2 =ict |
p3 = ? [W3—|-3t2]
ps = 1c’t [
ps = c* [Ws+(1562W,—10W3)—105t*W;—105¢*]
pe = ic’t [We—(21W5+35Ws W) — (2106 W, —280W3) +1260t*W5+945¢]
{

pr = e

— (3150t W, —6300t* W3 ) +17325t* W;5+10395t°
s— (361, +-84Wy Wy +126W, W5)

pg = ic't [_
— (63012 W5 —2520W3 W5+ 1575t2 W7 —2100W2W,)
+(6930t2 W5 +34650t> W3 W, —15400W3)
+(51975¢* W, —138600t* W3 ) —270270t* W5 —135135¢°] (B.28)

Now substitute for thél’. Forps, ... ps we use the expressions given in (B.27). ber ps
we use the spherical approximation (5.58) for all the terms on the right hand sides. That is
we sets = 1in W3, ... Wg on the right hand sides using the approximations

Ws — Wi =1—12,

Wy — Wy =5—12

W5 — W5 =5 — 18t% + t*,

Ws — Ws = 61 — 582 + t*. (B.29)
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The p-coefficients now become

pe =ict [1]

p3= B [ —t2 4+ 3t ]

p1=ic®t [4B% + B — t* —10(3 — t*) — 15¢°]

ps = c*[43%(1 — 6t%) + B*(1 + 8t) — 23t + ¢*

+ 15t2(46% + 3 — )
—10(B8 — t%)* — 105¢*(B — t*) —105¢t"]

pe = ic’t [83%(11 — 24¢%) — 283°(1 — 6t%) + 52(1 — 32t2) — 23¢* + *
—21{43%(1 — 6t) + B%(1 + 8t*) — 253> + t*}
—35(8 — t?)(48% + B — t7) — 210t*(48% + B — t?)
+280(3 — %) + 1260¢%(3 — t*) +945t*]

pr= O [61— 47962 + 179t — 15 + 28¢3(61 — 58t + ¢*) — 56(1 — %) (5 — 182 + t*)
+ 35t2(5 — %)% — 378t%(5 — 18t% + t*) — 1260t>(1 — t?)(5 — t?)
+280(1 — %)% — 31501 (5 — %) 4 6300£%(1 — t*)% 4 17325¢* (1 — ¢2)
+10395¢%]

Py = ic't [1385 — 3111¢* 4 543" — 0 — 36(61 — 479t + 179¢* — ¢°)
— 84(1 — t%)(61 — 58> 4 1) — 126(5 — t%)(5 — 18t% + t1)
— 630t%(61 — 58t% + t*) + 2520(1 — t2)(5 — 18t + 1)
—1575t2(5 — %)% 4 2100(1 — t2)%(5 — t2) + 6930t2(5 — 18t2 + t4)
+ 34650t%(1 — t2)(5 — t?) — 15400(1 — %)3 + 51975t1(5 — t?)
— 138600¢%(1 — %) — 270270t*(1 — %) —135135¢°]

Note that we have changesl, ps to p;, ps to show that these coefficients have been evalu-
ated in the spherical approximation. Finally, simplifying these expressions gives

]

+2t7]

=ict [1
p3 = 02 [
pa = ict [462 — 96 — 6t ]
ps= ¢ [453 1—6t%) — B%(9 — 68t%) — 7203t* — 24t%]
pe = ic’t [83%(11 — 24¢%) — 843%(3 — 8¢%) + 2255%(1 — 4¢7) + 6005t + 120t*]
pr= [61+ 662t2 + 1320t" + 720t
[~

Py = ic't [—1385 — 7266t> — 10920t* — 5040t°] (B.30)
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B.9 Proof of the Lagrange expansion

This derivation of the Lagrange expansion is included since it is to be found only in older

textbooks—see hibliography. This account is based on a simplified version of that in Whit-

taker's Modern Analysis (1902!!) where there is a more general statement of the theorem.
The derivation requires an excursion into complex analysis. In particular we require three
results which follow from Cauchy’s theorem. Since these results can be found in most texts
on complex analysis we quote them without proof.

Definition: a functionf(z) is analytic in some domainD if it is single valued and
differentiable withinD, except possibly at a finite humber of points, siegularities of
f(2). If no point of D is a singularity then we say thgtz) is regular.

« Cauchy’s integral formula: let f(z) be an analytic function, regular within a closed
contourC' and continuous within and o', and leta be a point withinC. If in
addition f(z) has derivatives of all orders, then theh derivative at is

f(")(a) _ L' yi (Zf(Z) dz (B.31)

- Qi _ a)n—i—l '

« The following result is usually found as a corollary to the prooftd principle of
the argument If f(z) andg(z) are regular within and on a closed contaurand
f(2) has a simple zero at= a then

s = L IR

S b 1) (B.32)

« Rouché’s theorem if f(z) andg(z) are two functions regular within and on a closed
contourC', on which f(z) does not vanish and al$g(z)| < |f(z)|, thenf(z) and
f(2) + g(=) have the same number of zeroes within

Let p(z) be regular within and on a closed contdtirand let there be ainglesimple
zero at the point = w insideC'. Consider the equation

p(z) =t, (B.33)
wheret is a constant such that
Ip(z)| > |t| atall points ofC'. (B.34)

By Roucte’s theorem (withf — p andg — —t) we see thap(z) andp(z) —t have the same
number of zeroes insid€, namely one. The zero ¢f z) is of coursez = w: let the zero

of p(z) — t bez = a. Therefore setting'(z) = p(z) — t andg(z) = z in equation (B.32),

noting thatt is a constant, we find the solutien= « of (B.33) is

/
vma= A, (B.35)
2mi Jo p(z) —t
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Expanding the integrand

_ LA (Y g
= 2mi o o) [”Z<p<z>> ]d' (539

1

Sincelt| < |p(z)| on C the series is convergent and we can integrate term by term to find

a=> A", (B.37)
0

where ) 1 )

=— d Ay,
°T omi Jo p(e)

=5 7, Wdz (n>1). (B.38)

Now sincep(z) has a simple zero at = w the first integral may be integrated by setting
g(z) = z in equation (B.32).

Ay = w. (B.39)

For the second integral we integrate by parts. The integral of the total derivative is zero
because the change in a single valued function around a closed curve is zero. Therefore

A, = %% 740 [p(i)]”dz? (n>1). (B.40)
Now set
pe) = (2 - wa() = (B.41)
so that
R G ()
A, = %mfc mdz. (B.42)

p(z) has one zero insid€, atz = w, soq(z) will have no zeroes withir' andr(z) will
have no poles withi'. Using the Cauchy integral formula (B.34), becomes

Z=w
= D] (> 1), (B.43)
Therefore the solution of
0y (B.44)
r(z)
is given by
z=a=w+ t—DfU”_l)[T(w)]". (B.45)
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Finally we set

f(z) = —tr(z), (B.46)
so that equation (B.44) becomes
w=z+ f(z), (B.47)
with the solution
z=w+ Z D(” DLf (w)]™ (B.48)

This is the form of the expansion given in Section B.3. The domain of validity is discussed
in the textbooks. In the current applications we start from convergent serieg fgprand
find that the above series foefw) is also convergent.
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Appendix

Plane Trigonometry

A brief reminder of some identities from plane trigonometry which are required at various
points in the main text.

basic definition expir = cosx + isinx (C.1)
expi(z +y) = (cosz +isinz)(cosy + isiny) (C.2)

real part of (C.2) cos(x +y) = cosx cosy —sinz siny (C.3)

y— —y cos(z —y) = cosx cosy + sinx siny (C.49)

imag. part of (C.2) sin(z + y) = sinz cosy + cosx siny (C.5)

y— —y sin(z — y) =sinz cosy — cosx siny (C.6)
t t

(C.5)/(C.3) tan(z +y) = Snrtany (C.7)
1 —tanztany
tanx — tany

c6)/(C4 t —y)=—"" C.8

(C.6)/(C4) an(@ —y) 1+ tanztany (C.8)
1

(C.5) + (C.6) sinx cosy = B [sin(z + y) + sin(z — y)] (C.9
1

Ty cosxsiny = 5 [sin(z + y) — sin(z — y)] (C.10)
1

(C.3)+(C.4) coSTCOSY = o [cos(z + y) + cos(z — )] (C.11)
1

(C.4)-(C.3) sinzsiny = 3 [cos(x — y) — cos(x + y)] (C.12)

x+y—x, yin(C.9) sinx + siny = QSinx;ycosx;y (C.13)

x+y— x, yin (C.10) sinx —siny = 2cosx;ysinx;y (C.14)

r+ty—x, yin(C.11) COST + cosy = 2COSI;yCOSx;y (C.15)

r+y—z, yin(C.12) cosx—cosy:—Zsinx;ysinx;y (C.16)
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y =z in (C.4)

y =z in (C.3)
use (C.17)
use (C.17)
y =z in (C.5)

from (C.21)

from (C.22)

use (C.21)

use (C.9)

from (C.26)

use (C.9)

from (C.24)

use (C.25)

use (C.25)

use (C.11)

CSC

2

1 = cos’x + sin’z

sec’z = 1 + tan’z

2

x = cosec’z = 1 + cot’x

sin

3

2 2

cos 2x = cos“z — sin“z

=1—2sin’z

2

=2cos“z — 1

sin2x = 2sinx cosx

—_

sin’z = — [1 — cos 2]

1
cos’z = 5 [1 + cos 2z]

\]

sin®

2

4

T COST = Zsinxcosx — —sin3x cosx

8

1
=3 [2sin 22 — sin 4z

sinz = = [1 — cos 2z)?

1
x = isinx[l — cos 2]
) 1. .
= 5 sinz — - [sin 3z — sin x|

1
S80I 48111 €T

3 1
= —sin2z — 3 [sin 4x + sin 2x]

0083{17 =

S N

1 1
= - 1—2cos2$+§+§cos4x

[3 — 4 cos 2z + cos 4z]
cos z [1 4 cos 2z]

1
cosz + [cos 3x + cos ]

AR WN N — oo —

coszx + 1 cos 3x

(C.17)
(C.18)
(C.19)

(C.20)
(C.21)
(C.22)
(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)
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NOTATION Sy =sinkz (C.30)
Cy = coskx (C.31)

Hence sinz = % [1— O] (C.32)
siny = i [35 — S3] (C.33)

sintz = % [3 —4Cy + C4] (C.34)

sin®r = %6 [10S — 553 + S (C.35)

sin®z = % [10 — 15Cy 4 6C4 — Cg] (C.36)

sinz = 6i4 (355 — 2153 + 7S5 — S7] (C.37)

sin®z = % [35 — 56C5 + 28Cy — 8Cq + Cs] (C.38)

sinz cosx = % [S2] (C.39)

sin®z cosx = é [252 — S4] (C.40)

sin’z cosx = 3% [5Sy — 454 + S¢] (C.41)

sin"x cosx = % [14S5 — 1454 + 6Sg — Ss] (C.42)

Hyperbolic functions

The basic definitions are

— AT
coshz = exi, sinh z= u. (C.43)
2 2
From equation (C.1) the corresponding equations are
eiz e—i.t ei:v _ e—iz
CcosT = %, sinx= Y (C.44)

so we can immediately deduce that

cosix = cosh x, siniz= isinh x, tanix = i tanh x, (C.45)
coshixz = cosz, sinhiz= isinx, tanh iz = i tan x. (C.46)

These identities can be used to derive all the hyperbolic formulae from the trigonometric
identities simply by replacing andy by iz andiy. This effectively changes all cosine
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terms to cosh. Each sine term becomeah and where there is a single sinh in each term
of the identity an overall factor af will cancel. Terms which have a product of two sines
will become a product of twésinh terms giving an overall sign change. Likewise for the
tangent terms. We list only the identities corresponding to (C.3—C.8) and (C.17-C.23).

cosh(z £ y) = coshz coshy + sinhx sinhy (C.47)

sinh(z + y) = sinhx coshy & coshz sinhy (C.48)
tanhz + tanh y

tanh(z £ y) = C.49
anb(z £ y) 1+ tanh x tanhy ( )
1 = cosh?z — sinh?z (C.50)
sech’z = 1 — tanh?z (C.51)
cosech?z = coth?z — 1 (C.52)

cosh 2z = cosh?z + sinh’z

=1+ 2sinh%z

= 2cosh?z — 1 (C.53)
sinh 2z = 2sinh z cosh (C.54)
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Spherical trigonometry

D.1 Introduction

A great circle on a sphere is defined by the intersection of any plane through the centre of
the sphere with the surface of the sphere. Any two points on the sphere must lie on some
great circle and the shorter part of that great circle is also the shortest distance between
the points. In general three great circles define a spherical triangle (Figure D.1) and this
appendix develops the trigonometry of such triangles. There are many (old) text books and
we recommend Todhunter’'s book on Spherical Trigonometry—see Bibliography.

Consider the three great circles defining the trian-
gle ABC'" they meet again in the point%;, B; and
C1 defining the triangled; B1C;. In fact they define
eight triangles since each pair of geodesics bounds
four triangles butABC and A, B;C, are counted
three times. (Think of slicing an apple into eight
pieces with three diametral cuts). Note that we do not
consider the 'improper’ triangles such as that formed
by theinterior arcsBA , BC together with theexte-
rior arc AC1 A1 C. Such improper triangles have one
angle greater than. Their solution presents no dif-
ficulty but we refer to Todhunter’s book for details.

Figure D.1

We now restrict attention to triangles in which the angles are less than or equal to
The case of all equal te is degenerate for the 'triangle’ must then be three points on one
great circle with the sum of the angles equabtoand the sum of the sides equalto (on
the unit sphere). The rigorous proof of this last statement is to be found in Euclid: Book 11,
Proposition 21—see Bibliography. We shall see that it has as a corollary that the sum of the
angles of a spherical triangle is greater thanThis lower bound is approached by small
triangles (sides much less than the radius) that are almost planar.
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Figure D.2 shows the spherical triangle in more
detail: A, B, C label the vertices and also give the
measure (in radians) of the angles of the spherical
triangle and the angles between plates$C, OAB
andOBC. The sides of the spherical triangle are
b, ¢; these give the distances along the great circle
arcs joining the vertices. The angles subtended by
the sides at the centre ag(3 and~ so thatu = aR
etc. The aim of this appendix is to prove the prin-
cipal relations between the six elements of a spheri-
cal triangle.The fundamental relation is the spherical _
cosine ruleALL OTHER RULES, and there are many, Figure D.2
can be derived from the cosine rule.

D.2 Spherical cosine rule

Geometric proof

In Figure D.2AD and AE are the tangents to the sides of the spherical triangh aAs

long as the angle§ and~y are strictly less tham /2 the tangent to the sidé B meets the
radiusO B extended tdD and the tangent to the sideC’ meets the radiu®C extended to

E. Since any tangent to the sphere is normal to the radius at the point of contact we have
that the triangle® AD andO AFE are right angled.

We apply the planar cosine rule to the triangle® E andADE:

DE? = OD? + OE? — 20D.0OF cos a,
DE? = AD? + AE? — 2AD.AE cos A.

Subtracting these equations and using Pythagoras’ theorem@iBet AD? = OA? and
OFE? — AE? = OA? we obtain

0 =20A%?+42AD.AE cos A — 20D.OE cos o
Dividing each term by the produ€@D.OFE and usingDA/OD = cos y etc.gives
cos a = cosy cos 8 + siny sin 3 cos A.

It is conventional to express these identities in terms of the actual sides so that we should
seta = a/R etc.If we assume that the lengths have been scaledutsitesphere then the
above, alongwith the two relations obtained by cyclic permutations, becomes

cosa = cosb cosc+sinb sinc cos A,
cosb = cosc cosa + sinc sina cos B, (D.1)

cosc = cosa cosb+sina sinb cos C.
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For a small triangle withe, b, ¢ < 1 on the unit sphere, the spherical cosine rules
reduce to the planar cosine rule if we neglect cubic terms. For example the first becomes

2 2 2
-2 = (1—b><1—c>+bccosA,
2 2 2

a®> =b% + % — 2bccos A.

which simplifies to

The above proof assumes that the anglesd~ are less than ninety degrees for the con-
structions as drawn. This restriction may be removed; it is discussed in detail in Todhunter’s
book (pages 16 to 19). The following alternative proof does not rely on these assumptions.

Cosine rule: vector proof

For any given spherical triangle we can introduce Carte-
sian axes with the-axis alongOA and thezz-plane de-
fined by the plane@)AB. Take the radius of the sphere
as unity and define vectoil8 and C along the radiiOB
andOC respectively. The angle between the pladés)/
andAON is given by/ MON = A, so the components of
these unit vectors are

B = (sin¢, 0, cosc),
C = (sinb cos A, sinb sin A, cosb) (D.2)

Figure D.3

Now the angle between the unit vectors is simg)ythe angle subtended at the centre
by the arcBC'. Therefore

B-C =cosa =sinb sinc cos A + 0 + cos b cosc, (D.3)

in agreement with our previous result for the cosine rule. This is the simplest proof of the
cosine rule: it needs no restrictions on the angles.

D.3 Spherical sine rule

Derivation from the cosine rule

From equation (D.1) we have

cosa — cosb cosc

Ccos A = - -
sinb sin ¢

2
. cosa — cosb cosc
sin?A=1— < )

sinbd sine

(1 — cos?b)(1 — cos®c) — (cosa — cosb cos c)?

sin?b sin%c
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Therefore
in A
SnA Ala,b,c), (D.4)
sina
where 20 — cos?b — cos?c + 2 cos a cos b cos c]l/2

[1 — cos

Ala,b,c) = (D.5)

sinasin bsin ¢

SinceA is invariant under a cyclic permutation @f b, ¢ we deduce the spherical sine rule

sinA sinB sinC

sin a sin b sinc

= A(a,b,c) (D.6)

The three separate rules are

sinb sin A = sina sin B,
sinc sin A = sina sin C,
sinb sin C' = sin ¢ sin B. (D.7)

Spherical sine rule: geometric proof

Consider the following construction. Take any point
P on the lineOA and drop a perpendicular to the
point NV in the planeOBC'. Draw the perpendicu-
lar from N to the lineOB at the pointM. There-
fore the three triangle® M N, PON and ONM

are all right angled triangles and we can therefore
use Pythagoras’ theorem to deduce that

O

PM? = MN? + PN?,
OP? = ON? + PN?,
ON? = OM? + MN?. Figure D.4

Therefore we must have
PM? = (ON* — OM?) + (OP? — ON?) = OP? — OM?,

so that the triangl€ PM must have a right angle &t/. From this we first deduce that
PM = OPsin~. Secondly we note that sinde\/ and N M are both normal t@ B then
the anglePM N is the angle between the plan@s1B and O BC this is the angleB so
that we must have

PN = PMsin B = OPsinvysin B.

We now repeat the argument with the constructiomVa perpendicular t@)C and prove
that triangleO PS is right angled and the angleSN is equal toC. (M, N andS are not
collinear). Therefore we find

PN = PSsinC = OPsin(sinC.
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Comparing the two expressions BV we deduce that
sin«ysin B = sin #sin C.

This whole process can be repeated witlan arbitrary point orD B or OC and dropping
perpendiculars onto the faceAC andO A B respectively. Clearly this will give

sinysin A = sin asin C,
sin Gsin A = sin asin B.
On the unit sphere the angles n, v will be replaced byu, b, ¢ giving equations (D.6).

Note that the construction and proof will need slight modifications if either of the ahyjles
or C exceedsr/2. This is discussed in Todhunter.

D.4 Solution of spherical triangles |

In general, if we know three elements of a triangle then we might expect to find the other
three elements by direct application of the spherical sine and cosine rules. Nug is
possible: to complete the solution in many cases we shall need further rules developed in
the ensuing sections.

The six distinct ways in which three elements may be given are shown in Figure D.5
along with a seventh case involving four given elements. In each figure the given elements
are shown below and the given angles are marked with a small arc and the given sides
are marked with a cross bar; each figure has variations given by cyclic permutations. The
solution of such spherical triangles is harder than in the planar case because we do not know
the sum of the angles: given two angles we do not know the third.

M A @ A ®» A @ A 6 A 6 A A

Q @ @) @ @ Q :@g

B>~—C B~——C B~—c B™~—~—HC B~~—JC B~—4C,B~—~c
(abc) (bcA) (beB) (aBC) (aAB) (ABC) (bcBC)

Figure D.5

« Case 1 this can be solved by using the cosine rule.
« Case 2 cosine rule givea and then we are back to Case 1.

Case 3 sine rule gives” and then we are in Case 7.

« Case 4 no progress possible with only sine and cosine rules.

Case 5 sine rule give$ and then we are in Case 7.

Case 6 no progress possible. This case doesn't arise in plane geometry.

Case 7 no progress possible with only sine and cosine rules.
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This is an appropriate point to mention that any determination of an angle or side from
its sine will generally lead to ambiguities sinse x = sin(m — x). However the angles
and sides on the unit sphere are in the intefdair) so their determination from cosines,
secants, tangents or cotangents will be unambiguous. Likewise the sine, cosine or tangent
of any half-angle (or side) is positive and its inverse is also unambiguous. Many of the
formulae that we will derive were established to avoid the sine ambiguity.

D.5 Polar triangles and the supplemental cosine rules

Figure D.6a below shows the three great circles which intersect to form the spherical triangle
ABC. In addition we show the normals to the plane of each great circle; each intersects
the sphere in two points each of which is a 'pole’ when a specific great circle is identified
as an equator. As shown some of the poles (small solid circles) are visible and some(open
circles) are on the hidden face. Three of these six poles may be used to define the polar
triangle. The convention is that and its poled’ lie on the same side of the diametral plane
containingBC; likewise for the others. We shall now prove the following statements.

« The sides of the polar trianglé’ B'C’ are the supplements of the angles of the orig-
inal triangle ABC'. (We assume a unit sphere on which the lengths of the sides are
equal to the radian measure of the angles they subtend at the centre).

« The angles of the polar triangl¥ B’C’ are the supplements of the sides of the origi-
nal triangleABC.

Figure D.6

Figure D.6b shows the triangléBC, the poleA’ of A and the corresponding ‘equator’
formed by extending the sidBC. Note three properties:

1. Any great circle through the pold’ to its equatoBC' is a quadrant arc of length/2
(on the unit sphere),e. /K = A'L = /2.

2. Any great circle through!’ intersects its equatdBC at a right angle, as d and L.

3. The angleX (in radians) between two such quadrant arcs is equal to the length of the
segment cut on the equator by the aiess A = /KA'L = K L.
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Figure D.7, which is neither an elevation nor a perspec-
tive view, shows theschematiaelation between the tri-
angleABC and its polar triangled’ B'C’. The sides of
ABC are extended along their great circles to meet the
sides ofA’ B'C’ at the points shown. From the the three
properties discussed in the previous paragraph we can g
deduce the following results.

Figure D.7

« The great circlesd’ B’ and A’C’ through the poled’ intersect the equator corre-
sponding toA4’, that isBC' extended, at point® and E. The intersections are right
angles and the distand®F is equal to the angld’ expressed in radians. Therefore
A= DE.

o B'G is a great circle through the pol®’ meeting its corresponding equatoi at
G. The intersection af is at right angles and the lengB{G = 7 /2. Similarly C'F'
is a great circle through the pol¢’ meeting its corresponding equatdéB at F: the
intersection af’ is at right angles and the lengf{ F' = /2.

« Now consider the intersections of the great citBl&” with the great circles defined
by AB andAC'. Since the angles & andG are right angles we deduce thaimust
be the pole to the equatd@’C’. Similarly B, C' must be the poles of the equators
C'A" and A’ B’ repectively. We conclude that the polar triangle of the polar triangle
A’'B’'C’" must be the original trianglél BC. Consequently (1) sinc€' is the pole
of A'B’ we must haveC’D = 7/2; (2) sinceB is the pole ofC’ A’ we must have
BE = 7/2; (3) sinceA is the pole ofB’C’ we must havd'G = A.

We now have all the information we need to deduce

A:DE:DC+BE—BC:g+g—a:ﬁ—m

d:EO:B@+FO—FG:g+g—A:W—A

Similar results follow for the other angles and sides of the polar triangle so that:

A=r—-a B =7m-b C'=7n—c,
d=r—-A V=r-B d=n-0C. (D.8)

An important corollary follows from the existence of the polar triangle. We have already
stated that Euclid proves that the sum of the sides of a spherical triangle on the unit sphere
satisfiess = a+b+c < 27. Applying this to the polar triangle givesr—A—B—C' < 27
so thaty, the sum of the angles, is greater tharSince we conventionally take the angles
to be less tham then we must have < > < 3x. (The restriction to angles and sides less
than = may be lifted; the so-called improper triangles so formed are discussed in Todhunter.
We have no need to consider them here.)



D.8 Appendix D. Spherical trigonometry

Supplemental cosine rules

As an example of using the polar triangle let us apply the cosine rules of (DABRE":
cosa’ = cosb’ cosc +sinb sinc cos A/,
cosb = cosc cosa’ +sinc sina’ cos B, (D.9)
cosc = cosa’ cosb’ +sina’ sind’ cosC'.

Now substitute for angles and sides usung equation (D.8) notingdk@at — 6) = — cos 6
andsin(m — 6) = sin 6:

cos A + cos B cosC' = sin B sin C' cos a,
cos B+ cosC cos A =sinC sin A cosb, (D.10)

cosC + cos A cos B = sin A sin B cosc.

Now these equations, obtained by applying a known rule to the polar triangle, are obviously
newrelations between the elements of the original triangle; they are called the supplemental
cosine rules. This is an example of a powerful method of generating a new formula from
any that we have already found.

The supplemental cosine rules clearly provide a way of solving a spherical triangle when
all three angles are given. This is Case 6 in Figure D.5.

Note that a new rule does not always arise. For example, applying the sine rule to
A'B'C’" gives
sindA’  sinB’ sinC’

sina’  sind  sind

On substituting (D.8) we have the usual rules simply inverted:
sina B sinb B sin ¢
sinA  sinB sinC’

Alternative derivation of the supplemental cosine rules

It is possible to derive the supplemental cosine rules directly without appealing to the polar
triangle. For example, in the first formula of (D.10) substitute for the terms on the left-hand
side using the normal cosine rules:

(cos a— cos bcos ¢) sin?a + (cos b— cos ¢ cos a)(cos c— cos a cos b)
2

cos A+ cos B cos C= - - -
sin“a sin bsin ¢

a — cos?b — cos?c + 2 cos a cos b cos ]
2

cos a[l — cos?

sin“a sin bsin ¢

= cosa A%sinb sinc
=cosa sin B sin C,
where we have used the definition 4f in (D.5) and also the sine rule (D.6). Thus we

could have proceeded in this way and then deduced the existence of the polar triangle as a
corollary without the geometrical proof that we presented earlier.
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D.6 The cotangent four-part formulae

The six elements of a triangle may be written in an anti-clockwise ordgr@sAcB). The
cotangent, or four-part, formulae relate two sides and two angles formingdémsecutive
elements around the triangle, for exami€'bA) or BaCb. The six distinct formulae that
we shall prove are

(a) cosb cosC' = cota sinb — cot A sinC, (aCbA)

(b) cosb cos A = cot ¢ sinb — cot C' sin A, (CbAc)

(c) cosc cos A = cot b sinc — cot B sin A, (bAcB) (D.11)
(d) cos ¢ cos B = cota sinc — cot A sin B, (AcBa)

(e) cosa cos B = cote sina — cot C sin B, (cBaC)

(f)  cosa cosC = cotb sina — cot B sin C, (BaCb),

where the subset of elements involved is shown to the right of every equation. In the first
equation, for the setCbA, we terma and A the outer elements and andb the inner
elements. With this notation the general form of the equations is

cos(inner sidg. cos(inneranglé = cot(outer sidg. sin(inner side

o (D.12)
— cot(outer anglé. sin(inner angle

Note that the ‘inner’ elements of each set formula occur twice and cannot be deduced from
the other elements; only the ‘outer’ elements of each set may be derived in terms of the
other three. For example in the first equation involving the:6&tA we can only determine

the outer side: in terms of CbA or the outer anglel in terms ofaCb. Note also that the
outer angle or side is determined from its cotangent so that there is no ambiguity.

To prove the first formula start from the cosine rule (D.1a) and on the right-hand side
substitute foros ¢ from (D.1c) and fowin ¢ from (D.6):

cosa = cosbcosc + sinbsin ¢ cos A
= cosb(cosacosb+ sinasinbcos C) + sin bsin C'sin a cot A

cos a sin?b = cos bsin a sin b cos C + sin bsin C'sin a cot A.

The result follows on dividing byin a sin b. Similar technigques with the other two cosine
rules give D.11c,e. Equations D.11b,d,f follow by applying D.11e,a,c to the polar triangle.

Solution of spherical triangles Il

The four-part formulae may be used to give solutions to two of the cases discussed
in Section D.4. In Case 2 in Figure D.5, where we are gi(fefic), we can use equa-
tions D.11Db,c to find the angl&s, B from their cotangents: we can then fiadrom D.11a
without any sine ambiguity. We can now solve Case 4, where we are @ief), by using
equations D.11e,f to give the sides and we can then find from D.11a. We are still left
with the problem solving Case 7 (since Cases 3, 5 can also be reduced to Case 7).
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D.7 Half-angle and half-side formulae

If 2s = (a + b+ ¢) is the sum of the sides a2 = (A + B + C) is the sum of the angles,
then we can easily prove the following formulae:

. A [sin(s—b)sin(s—c) 12 . a | —cosScos(S—A) 12

sin — = sin — = - :

2 sinbsinc sin B sin C'

A [sinssin(s—a) 12 a |cos(S—B)cos(S—C) 1z
COS— = |~ " cos - = - :

2 sinbsin ¢ 2 sin Bsin C'
¢ A Isin(s—b)sin(s—c) 12 tan & = —cos S cos(S—A) 12
sy = sin s sin(s—a) g = cos(S—B) cos(S—C)

(D.13)

To prove the first formula use»s A = 1 — 2sin?(A4/2) and the cosine rule (D.1).

1  cosa—cosbcosc  cos(b—c) —cosa

2 2sinbsinc 2sinbsin ¢

1 . fa+b—c\ . [fa—b+c
=———sin| ——— |sin| ——— ] .
sinbsin ¢ 2 2

Since2(s—b) = (a + b+ ¢) — 2b = a — b + ¢ etc.we obtain the first result. The second
follows from 1+ cos A = 2 cos?(A/2) and the third from their quotient. The results in the
right hand column follow by applying the first column formulae to the polar triangle. They
also follow from (D.10) and by starting wittbs a = 1 — 2sin?(a/2) etc..

It is worth commenting on the negative signs under some radicals. Take the expression
for sina/2 as an example. Sinee< A + B + C' < 37 we haver/2 < S < 37/2 so that
cos S < 0. Now in any spherical triangle the sideC' is the shortest distance betweBn
andC so we must haveBC < BA + AC, ora < b+ ¢, i.e. any side is less than the
sum of the others. Applying this to the polar triangle we haved < (r—B) + (7—C);
therefore2(S—A) = B+C—A < mor(S—A) < 7/2. Furthermore, sincd < 7 we have
B+C—A > —r and consequent(S—A) > —r. Therefore-n/2 < (S—A) < w/2and
cos(S—A) > 0. These results guarantee that the expressions under the radical are positive.

Solution of spherical triangles Ill

The above formulae are clearly applicable to the cases where we know either three sides
or three angles, cases which we have solved by either the normal or supplemental cosine
rules. The expressions given here involving tangents of half angles are to be preferred
whenever the angle or side to be found is very small or nearly
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Delambre (or Gauss) analogies.

sin 5 (A+B) _ cos 2(a—b) sin (A—B) _ sin 3 (a—b)
cos %C cos %c cos %C sin %c
(D.14)
cos +(A+B) _ cos $(a+b) cos +(A—B) _ sin 1 (a+b)
sin %C cos %c sin %C sin %c

These are proved by expanding the numerator on the left hand side and using the half angle
formulae. For example, using equations C.5, C.13 and C.23

1 A B A . B
sin §(A+B) = sin o cos o + cos 5 sin o

sin s sin?(s—b) sin(s—c)] 1/2 N {sin ssin?(s—a)sin(s—c) 1/2

sin a sin bsin2c sin a sin bsin2c

_ sin(s—b) + sin(s—a) [Sinssin(s_c)} 1/2

sinc sin a sin b
.1 1
_sinzc cos 5(a—b) lC
— T cos =C,
sin ;¢ cos 5¢ 2

and hence the required result.

Napier’'s analogies

Published by Napier in 1614. His methods were purely geometric but we obtain them by
dividing the Delambre formulae.

cosi(a—b cosi(A—B
tan 2(A+B) = z(a-b) cot 3C tan L (a+b) = 3( ) tan ¢
2 cos 1 (a+b) ? 2 cos +(A+B) 2
2 2
sin (a—b sin (A—B
tan %(A—B) =2 A G)) cot %C’ tan %(a—b) _ 2 3( tan %c
sin $(a+b) sin 5 (A+B)

Solution of spherical triangles IV

We now have all we need to solve all the possible configurations shown in Figure D.5.
Napier's analogies clearly provide the means of solving Case 7, and hence Cases 3, 5. They
also provide a means of progressing without the trouble of ambiguities arising from the use
of the sine rule. For example in Case 4 givenB, C, we can use the Napier analogies to

find b + ¢ and then again to find.
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D.8 Right-angled triangles

There are many problems in which one of the angles,(3aig equal tor/2. In this case

there are only 5 elements and in general two will suffice to solve the triangle. We shall
show that the solution of such a triangle can be presented as a set of 10 equations involving
3 elements so that every element can be expressed in terms of any pair of the other elements.

The required 10 equations involvirgg are found from the third cosine rule (D.1), two
sine rules (D.7), four cotangent formulae (D.11) and all three of the supplemental cosine
rules (D.10). Setting’ = 7/2 we obtain (from the equations indicated)

(D.1c) COs ¢ = cosa Ccos b, (D.11b)  tanb = cos A tanc,
(D.7b) sina = sin A sinc, (D.11e) tana = cos B tanc,
(D.7¢) sinb = sin B sinc, (D.10a) cos A =sin B cosa,
(D.11a) tana = tan A sinb, (D.10b)  cos B =sin A cosb,
(D.111) tanb = tan B sina, (D.10c) cosc = cot A cot B. (D.16)

As an example suppose we are giveandc (andC = 7/2). Then we can find, A, B
from the first, fourth and fifth equations.

Napier’s rules for right-angled triangles

Napier showed that the ten equations which give all
possible relations in a right-angled triangle can be
summarised by two simple rules along with a simple
picture. We define the ‘circular parts’ of the triangle
to bea, b, 3m — A, 37 — ¢, and3m — B. These
are arranged around the circle in the natural order
of the triangle,C' omitted between andb. Choose
any of the five sectors and call it the middle part.
The sectors next to it are called the ‘adjacent’ parts
and the remaining two parts are the ‘opposite’ parts.

Napiers rules are: Figure D.8

(72)

sine of middle part = product of tangents of adjacent part

D.17
sine of middle part = product of cosines of opposite partg ( )

For example if we tak%w — ¢ as the middle part the first rule givesi(7/2 — ¢) =
tan(mw/2 — A) tan(7 /2 — B) which gives the last of the equations in (D.16); if we apply the
second rule we gein(m/2 — ¢) = cos a cos b which is the first of the equations in (D.16).
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D.9 Quadrantal triangles

The triangleABC is quadrantal if at least one side subtends an angtg¢®ht the centre of
the sphere. Without loss of generality take- /2. Therefore the angl€” = = — ¢ of the
polar triangle is equal ta /2. Now apply Napier’s rules to the polar triangle with = 7 /2
and

ad=r—A b=r-B, A=wr—a, B =7n-bh

The circular parts of the polar triangle

’ % T_y T T_p
a ) ) 2 ) 2 c ) 2 )
must be replaced by
7r T 7
—A —-B —— C—-— b——
i ) 7r ) a 2 Y 2 Y 2 Y
Noting thatsin(z—n/2) = —cosz, cos(z—7m/2) =
sin x andtan(x—m/2) = — cot 2 we have the following
equations:
Figure D.9
cosC' = —cos A cos B, tan B = —cosa tan C,
sinA = sina sinC, tan A = —cosb tan C,
sin B = sinb sinC, cosa = sinb cos A,
tan A = tana sin B, cosb= sina cos B,
tan B = tanb sin A, cosC = —cota cotb. (D.18)
Example

As an example of a quadrantal triangle we consider
a problem arising in the discussion of geodesics on a
sphere in Chapter 11. With the following identifications

a = s, b:g—qb, c:g,
A=) B = ay, C=n—a (D19
the equations (D.18) become Figure D.10
COS v = COS \ COS ay, tan og = cos s tan «,
sin A = sin s sin a, tan A = sin ¢ tan q,
sin g = cos ¢ sin «, COS S = COS @ COS A,
tan A = tan s sin ay, sin ¢ = sin s cos ap,
tan ag = cot ¢ sin A, cos o = cot s tan ¢. (D.20)

The practical problems are (a) give ands find A, ¢ ande; (b) givenA, ¢ find o ands.
For the first we use the fourth, ninth, and then the first equation. For the second we use the
fifth and eighth equations.
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Solution of spherical triangles V

The rules for right angled triangles provide another method for A
the solution of spherical triangles in general. Consider the tri-
angleABC shown in the figureb, ¢, B are assumed given.

Draw the great circle througH which meetsBC at right an-

gles at the poinD. We first solve the trianglel BD usingc C
andB to find AD, BD and/BAD. Then in triangleAC D D

we useAD andb to find CD and the anglesCAD andC. B

The difficulty with this method, apart from the increased num-

ber of steps, is to find the most appropriate construction. Figure D.11
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Power series expansions

E.1 General form of the Taylor and Maclaurin series

Taylor’s theorem may be written in the form:

(z—b) (z —b)?
1l 2l

z —b)3
F) = 1) + S/

or, alternatively,

f(b) + f(b) +

Y, z? 1 2 m
Flb+2) = )+ 2 F1B) S £70) + 5 B+

Whenb = 0 we obtain Maclaurin’s series.

Z 22 1 2 "
F2) = FO) + 2 F10) + S 710 + 5 70+ -

E.2 Miscellaneous Taylor series

22 23 24

sin(b+z) = sinb + zcosb — Esinb— gcosb—i— Esinb+~-
22 23 2

cos(b+z) = cosb — zsinb — jcosb—i- gsinb—i— Ecosb+~--

3

tan(b+2) = tanb + zsec’b422 tan b sech—i—% (1+3 tan?b) sec?b+- - - -

8
tan(%-ﬁ-z) :1+2z+222+§z3+'~
2 b

. : z
arcsin(b+z) = arcsinb + z(l )i +5 2 4.

fm(b) +een

1
arctan(b+2) = arctanb + 23255 = o e Ty

_274 —24b N 4803
40 [(1402)3 - (1+02)4

22 2 23 -2 N 8h2
(1402)2 " (1+42)3

|

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

lover
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E.3 Miscellaneous Maclaurin series

e Logarithms

1 1 1
In(1+2) = 2—522—#523—124—%--- -1<2z<1 (E.10)
1 1 1
ln(l—z):—2—522—523—1244—--- -1<z<1 (E11)
1 2 2 2
1n<1i_z>— 2z+§z?’+gz5+?z7+-~- |z| <1 (E.12)
e Trigonometric
nz=z- 224 =20 ma E.13
sinz =2z — 72 +az—ﬂz +- |z| <00 (E.13)
1 1 1
cosz:1—522+ﬁz4—az6+--- |z] < 0o (E.14)
1 2 17
tanz:z+§zg+1—525+%z7+~- |z]<g (E.15)
1 ) 61
secz:1+§z2+ﬂz4+ﬁozﬁ+--' |z]<g (E.16)
1 1 7 31
CSCZ:;+62+%23+m25+“'0<’Z‘<7T (El?)
1 1 1 2
cotz:f—gz—£z3—%z5—~-- 0<|z|] <7 (E.18)
e Inverse trig
. 15 3 5 5 -
arcsinz =z + 2% + 527 + ozt 4o |z| <1 (E.19)
banz—z— 41517yl 2] <1 (E.20)
arctanz =z — gz° + 2% — 2" + oz z .
e Hyperbolic
: _ L s 15 157
smhz—z—i—gz +az —|—ﬁz +-- |z| < oo (E.21)
1 1 1
coshz:1+§z2+gz4+@zﬁ+-~ |z| < oo (E.22)
1 2 17
tanhZ:Z—523+EZ5—EZ7+"‘ ’Z’<g (E23)
1 ) 61 us
hzm1—-224 24 O 6. T (E.24
sech z 5% +24z 750% |z| < 5 ( )

lover
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E.4 Miscellaneous Binomial series

Settingf(z) = (1 + z)", n an integer, in the Maclaurin series gives the standard binomial
series:

(1+z)":1—|—nz—|—n(7;!_1)z2+--'+(n_nrl)!r!zr—i—---, (E.25)
I+2)t=1—-z+22 -2+, (E.26)
(1+2)72=1-224+32%2 422 +521 ... (E.27)

Whenn is a half-integer we obtain
(1+ )1/2—1—|—12—122+iz3—iz4—|—---, (E.28)

2 8 16 128

1 3 ) 35
1 12 -1 - 2_ 2 3, %0 4. E.29
(14 2)" 22—1—82 167 +128 , ( )
3 15 35 . 315
1 -3/2 _ 1 _ 109 90 3 o, E
(1+=2) 7t 57 167 T wR” , (E.30)

We will also need the the inverse Of + azz? + a42* + a2%). Therefore replacing
by (a22% + asz* + ag2®) in (E.26) gives

(1+asz’ a4z +as2%) 71 =1 — (a22® + asz* + a62®)
+ (a32* + 2a2a42° 4+ )2 — (a32° + - )P+ O(2)

=1 — (a2)2® — (ag4—a3)2* — (ag—2a0a4+a3)25+0(2®).

(E.31)
Furthermore
2 4 6\ —1 2 4
asz a4z agz z Z
1 :1—7
(+ SRR +720> 5 (a2) = 7 (a1=643) = 20 (ag—30a204--90a5).

(E.32)
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Appendix

Calculus of variations

The simplest problem in the calculus of variations is as follows.H(et, y, y') be a function
of = and someinspecifiedunctiony(x) and also its derivative. For evegyx) we construct
the following integral betweefixedpoints A and B at whichx = ¢ andx = b:

b
Jy] —/ F(x,y,y)dx. (F.1)

The problem is to find the particular functigiiz) which, for a given functiorf’(x, y, v'),
minimises or maximises[y|. In general we will not be able to say that we have a maximum
or a minimum solution but the context of any particular problem will usually decide the
matter. The following method only guarantees ttfigf] will be extremal. The solution here

is valid for twice continuously differentiable functions.

Figure F.1

We first tighten our notation a little. We assume that an extremal function can be found
and that it is denoted by(x), the heavy patld’ in the figure;J[y] then refers to the value of
the integral on the extremal path. We consider the set of all pathslefined by functions
y Where

y(z) = y(z) + en(z), (F.2)

wheren(x) is an arbitrary function such thata) = 7n(b) = 0, thus guaranteeing that
the end points of all paths are the same. One of these paths is de€notedhe figure.
The set of integrals for one givef(z) and varyinge may be considered as generating a
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function®(e) such that

b
O(e) =Jy| = Jy+en) = / F(x,y+en, v +e)du. (F.3)

In this notation the value of the integral on the extremal path(i¥) and the condition that
it is an extremum is

dd
— =0. F.4
de | _, (F.4)
The Taylor series for the integrand is
F(z,y+en y +en)=F+ Fyen+ Fyen' + 0(62) (F.5)

where F;, and F, denote partial derivatives of' with respect toy andy’ respectively.
Substituting this series into the integral and differentiating with respecgiees

dP b
e = / [Fyn + Fy/n’] dz = 0. (F.6)
€ e=0 a

The second term may be integrated by parts to give

b b b d
/ Fynlde = [Fyn]| — / n—— [Fy] da. (F.7)

a
Since the first term vanishes we have proved that for an extremal

/bn(x) H(x)dz =0, (F.8)
where  H(x) = dii* [Fy] — Fy. (F.9)

We now show that equation (F.8) implies thd{z) = 0. This result rejoices under the
grand name of ‘the fundamental lemma’ of the calculus of variations. The proof is by
contradiction: first suppose thaf(z) # 0, say positive, at some point in (a,b). Then
there must be an interval;, z2) surroundingzo in which H(z) > 0. Sincen(x) can

be any suitably differentiable function we take= (zo — z)*(x — x1)* in [x1, 23] and

zero elsewhere. Clearly, for such a function we must f}%f\/@de > 0, in contradiction

to (F.8). Therefore our hypothesis thdt=£ 0 is not valid. Therefore we must havé = 0,
giving the Euler—Lagrange equations:

d [OF or
dx [3?/] dy
In this equation the partial derivatives indicate merely the formal operations of differentiat-
ing F(x,y,y") with respect tay andy’ as if they were independent variables. On the other
hand the operatat/dz is a regular derivative and the above equation expands to

o0’F O*F 0°F OF
920y + 8y8y’y, + ay,Qy” ~ oy 0. (F.11)

This is a second order ordinary differential equationg@r): it has a solution with two
arbitrary constants which must be fitted at the end points.

EULER-LAGRANGE 0. (F.10)
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An alternative form of the Euler-Lagrange equations

Using the Euler equation (F.10) we have

d d
ZQMTQ—N%%MH=M7y+daj%ﬂ—&—Fw“J%M=—&,Gﬂa

giving an alternative equation

dW@—ﬂ+&=0 (F.13)

dx
Functions of the form F(y, y’)

Equation (F.13) shows thatF is independent of then the equations integrate immediately
sincef, = 0:

y'F, — F = constant (F.14)

Functions of the form F'(x, y’)

If F'is independent of then equation (F.10) can be integrated directly siAge= 0:

F,, = constant (F.15)

Extensions

There are many variants of the above results:

F has two (or more) dependent functiodd{z, u(z), v'(z), v(z), v'(z))
F has two (or more) independent variablé¥z, y, u(z,y), u'(z,y))
Both of aboveF(a;, y, u(z,y), v(x,y), v(x,y), v’(m,y))

F involves higher derivativest'(z, vy, v/, v, ...).

a M W bnhpoE

The end points are not held fixed.

Only the first of the above concerns us here. The proof is along the same lines as above but
we need to make two independent variations and set

a(x) = u(x) +en®™ (@),
o(z) = v(z) + en™ ().

Equation (F.8) now becomes of the form

/b [n(“) (z) H® () + W) (z) HY) ()| dz = 0. (F.16)
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Sincen™ andn(*) are arbitrary independent functions we obt&ift) = H®) =0, i.e.

d [0F] OF
£ [W} g (F.17)
d [0F] OF
. L%,} -2 (F.18)

Sufficiency

The Euler—Lagrange equations have been shown to be a necessary conditions for the ex-
istence of an extremal integral. The proof of sufficiency is non-trivial and is discussed in
advanced texts.
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Complex variable theory

G.1 Complex numbers and functions

Complex numbers

A complex number is a pair of real numbers;, ¥ combined with the basic ‘imaginary’
number i’ in the expressior = x + iy. Such complex numbers may be manipulated just
as real numbers with the proviso that= —1. We say that: is the real part of the complex
number,z = Re(z), andy is the imaginary party = Im (z). Fromz = z + iy we form its
complex conjugate* = x —iy. Note that:z* = (z +iy)(z —iy) = 2% +y2. The complex
numberz = z + iy may be be represented as a pdinty) in a plane which is called the
complexz-plane. It is also useful to introduce polar coordinates in the plane and write

z=ux+1y =r(cosh +isinf). (G1) ¥

In this context we say thatis the ‘modulus’ ofz andé is the
‘argument’ ofz and write

r=lz| = [1‘2 + y2]1/2, 0 = arg(z) = arctan (%) . 0 : x

(G.2)
Note that we can also write= |z| = v/ zz*. Figure G.1

Complex functions: examples

« The simplest complex function we can consider is a finite polynomial such as:
w(z) =3+ 2z + 22 (G.3)
If we substitutez = = + iy in this expression, using = —1, we obtain

u(:z:,y):?)-l—x—l-x?—yz,

w(z) = u(z,y) +iv(z,y) where { o(z.y) = g + 20y, (G.9)

Here we have writtem(z) in terms of two real functions of two variables. All com-
plex functions can be split up in this way.
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« Complex functions may be defined by convergent infinite series of the form

w(2) = ap + a1z + a22® + a32® + agzt +az2® + -, (G.5)

where the coefficients will, in general, be complex numbers. The real and imaginary
parts ofw(z) will be infinite series.

The complex exponential function is defined by the series

PR T P T PR R
expz—l—i—ﬂz—{—iz +§Z —1—12 —1—52 4+ (G.6)

It can be proved that this series is convergent for all values dfote that wher is
purely real,z = z, the series reduces to the usual real definitioaxgf(x). Whenz
is purely imaginaryz = i6 say, we get a very interesting result:

R SR S S PR J

Now the real terms in this expansion are simply those in the expansi@a éfwhilst
the imaginary terms are those that arise in the expansiem@éf Therefore we can
write the polar coordinate expressionzoin (G.1) as

z=r(cosf +isinf) = rexp(if) = re'. (G.8)
If we raise this result to the-th power we obtain De Moivre’s theorem:

2" = r"exp(inf) = r"(cosnb + isinnb). (G.9)

We can also define the sine and cosine functions of a complex number by the series

1 1

coszzl—gzz%—az‘l—---, (G.10)
1 1

sinz:z—ng—ngE’—‘-'. (G.11)

Once again, when is purely real,z = =z, these series reduce to the usual real de-
finition of cos(x) andsin(x). Whenz is purely imaginaryz = i6 say, we get the
following important results using (E.21,E.22):

cosifl = cosh@, (G.12)
sinif = isinh 6, (G.13)
tan 0 = i tanh 6. (G.14)

For a general complex number we can use compound angle formulae (C.3,C.4) to
determine the real and imaginary parts of the sine and cosine functions:

cos(z + 1y) = cos x cos iy — sinx siniy = cosx coshy — isinzsinhy, (G.15)

sin(x 4 iy) = sinx cos iy + cos xsiniy = sinxz coshy + icoszsinhy. (G.16)
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« In Chapter 4 we require the real and imaginary partsoot; these follow from the
guotient of the last two equations. Simply multiply top and bottom by the complex
conjugate of the denominator and use the identitiegdelx, cosh 2z etc.given in
Appendix C. It will be convenient to use different notation for this example.

cos Acosh B — isin Asinh B

t(A+1B) =
cot(A +iB) sin A cosh B + i cos Asinh B

sin A cos A — i sinh B cosh B
sin?4 cosh?B + cos? A sinh? B

sin2A — ¢sinh 2B
~ cosh2B — cos 24 (G.17)

« Similarly, we define the hyperbolic sine and cosine functions of a complex numbers.
Whenz is purely realz = x, these series reduce to the usual real definitiorgi x
andsinhz. Whenz is purely imaginaryz = i say, we get the counterparts of

(G.12-G.14)

he—14 2224 =58 G.18

coshz = +§z +@Z + e (G.18)

1 1

sinhz =z + 523 + 525 =+, (G.19)

coshif = cosé, (G.20)

sinhif = isin 6, (G.21)

tanh 6 = itan6. (G.22)

G.2 Differentiation of complex functions

Before presenting the definition of differentiation of a complex function we examine two
aspects of real differentiation.

Real differentiation in one dimension

The usual definition of the derivative of a real functipfx) is

Fla) — g T H00) @)

52—0 ox (G.23)

The ‘small print’ of the definition is that the limit whentends to zero from abové{ —

0+) should be equal to the limit whentends to zero from below¢ — 0-). In principle
these limits could be different and we would then have to define two different derivatives,
say fi (x) and f’ (z). A simple example where the limits differ is the functiitx) = ||,

for which f. = +1 and f” = —1 at the origin. The only point we wish to make is that
even in one dimension we must be careful about directions when defining derivatives.
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Real differentiation in two dimensions

In two dimensions we can define two partial derivatives: that with respecti@ing the
derivative off(x, y) wheny is held constant, and that with respecytbeing the derivative
of f(x,y) whenz is held constant. The notation and definitions of the partial derivatives is

<8f> i L&+ 02y) — f(z,9) <8f> lim L&Y +0y) = f(z,y)
Yy T

N oy—0 5:1/

% N 52}—>0 ox ’ 873/
(G.24)

The brackets and subscripts are usually dropped if there is no ambiguity introduced thereby.

There is no reason why the two derivatives should be equal, or even related in any particlar

way.

The above derivatives are along the directions of the coordinate axes but it is perfectly
reasonable to seek a derivative ffz,y) along any specified direction. To do this we
use Taylor’'s theorem (in two dimensions), keeping only the first order terms, so that for a
general displacement with componedisanddy,

of = géﬂ: + 8—f5y. (G.25)

ox oy

If the direction of the displacement is taken in the direction of the unit vastand the
magnitude of the displacementds, then we can setx = n,ds anddy = n,ds. We can
then define a directional derivative in two dimensions as

daf of of

L) =2t -, G.26

(ds)n " B +ny8y ( )

The point we wish to stress is that the derivatives of functions of two variables are essentially
dependent on direction.

Differentiation of complex functions

We have seen that a complex function can always be split into two functions of two variables
as in (G.4) and therefore the differentiation of a complex functidn) = « + iv may be
expected to parallel the partial differentiation pfz,y) given above. This would mean
that complex functions were no more that a combination of two real functions. Instead, we
define the derivative ofy(z) in a way that parallels the the definition of the derivative of a
real function in one dimension, namely

oy e w(z+6z) —w(z)
wi(z) = lelgo 6z '

(G.27)

The crucial step is that we demand that this limit should erdépendent of the direction

in which §z tends to zero. If such a limit exists in all points of some region of the complex
plane then we say that(z) is ananalytic (or regular) function of z (in that region). This
restriction on differentiation is very strong and as a result analytic functions are very special,
with many interesting properties.
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The Cauchy—Riemann conditions

The Cauchy—Riemann conditions are a pair of equations whichewmessarilysatisfied if
w(z) is differentiable. To derive them first write out the definition of the derivative in terms
of the functionsu(x, y) andv(x, y) and sebz = dx + idy.

u(z + ox,y + oy) + wv(x + dz,y + dy) — u(z,y) —iv(x,y)
dx + 10y

w'(z) =  lim <

§(z+iy)—0
(G.28)
Consider two special cases. In the first welletend to zero along the reataxis. Therefore
we setdy = 0, so that the limits reduce to partial derivatives with respeat to

w'(2) = uy + vy, (G.29)
Repeating with limit taken along theaxis, so thatx = 0, we have

w'(z) = % (uy + ivy) = vy — Uy, (G.30)

If we now demand that these two derivative¥ z) are the same we have the Cauchy—
Riemann equations:

’ Uy = Vy, Uy = —Vg ‘ (G.31)

It can also be shown that if the partial derivativgsetc.are continuous, then the Cauchy—
Riemann conditions are sufficient for the derivativéz) to exist.

Simple examples of differentiation

« As an example of differentiation and the Cauchy—Riemann conditions consider the
functionw(z) = 23. Since

w=u+iv = (x+iy)*
= 23 + 322 (iy) + 3z(iy)? + (iy)® (G.32)

the real and imaginary parts and their partial derivatives are

w=z>— S:UyQ, v = 39:23/ — y3.
uy = 3z — 342, v, = 62,
uy = —6xy, Uy = 322 — 3y%.

These equations show that the Cauchy—Riemann equations (G.31) are indeed satisfied

and we can use either (G.29) or (G.30) to identify the derivative as
w'(2) = ug + vy = vy — iy
= 322 — 3y? + i6xy = 3(x + iy)*
= 322 (G.33)



G.6 Appendix G. Complex variable theory

« Similarly we can prove that(z) = 2" is analytic with a derivative given by’(z) =
nz""1. (The proof is easier if the Cauchy—Riemann conditions are written in terms
of polar coordinates anel” is written as"e"?.

« Consider the functiom(z) = sin z. The real and imaginary parts of the sine function
were determined in equation (G.16) so thdt) = u + iv where

u = sinx cosh y, v = cosxsinhy.
Uy = CcoS T coshy, vy = —sinxsinhy,
uy = sinx sinh y, vy = cosxcoshy.

Once again the Cauchy—Riemann equations are indeed satisfied and we can identify
the derivative from equation (G.15):

w'(2) = ug + vy = vy — iy
= cosz coshy — isinx sinh y

= oS 2. (G.34)

« In similar ways we can show that all the derivatives of ‘standard’ functions parallel
those that arise for functions of one real variable.

Taylor’s theorem

We state without proof or qualification that under ‘reasonable’ conditions an analytic func-
tion may be represented by a convergent Taylor’s series. In the following development we
shall use the theorem in the following form.
1 1 1
w(z) = w(zo)+F(z—zg)w’(zo)+5(z—z0)2w”(z0)+§(z—z0)3w"’(z(])+- -+ . (G.35)
It is also true that any convergent power series defines an analytic function. Proofs of these
statements are to be found in the standard texts on complex functions.

/continued overleaf
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G.3 Functions and maps

Mathematicians and geographers both use the term map in essentially the same way. A
complex functionw(z) may be viewed as simply a pair of real functions which define a
map in the sense that it takes a point y) in the complexz-plane into a pointu, v)

in the complexw-plane by virtue of the two functiong(z,y) andv(z,y). Points go to

points, regions go to regions, curves through a point go to curves through the image point,
(Figure G.2). The important result is thatuif(z) is an analytic function then, the angle

of intersection of two curve§’; andC, at P, is equal toy’ the angle of intersection of

the image curves at the image point. Such maps are said to be be conformal. We proceed
immediately to the proof of this statement.

y . |£ v ""‘-v---. |1V
Lemm T T . ol Cl
,‘x C1 \“ C
| P2) G : 2
' H P'(z . '
T R
O R ""' X O Rv u
Figure G.2

Proof of the conformality property

Let zg be a fixed point on the curv@ in the z-plane. Letz be a nearby point o6’ and write
z — 2y = r&?. Note tha¥) is the angle between real axis and the chord; in the limit z,
this angle will approach the angle between the real axis and the tangerdtta,. Let wy

y C lz

Figure G.3

andw be the corresponding image points andwset wy = r'€? . Taylor's theorem tells
us that

w(z) = w(a) + 5z = 20)!(20) + 55z = o)+, (G39)

so that we can write

=w'(z) + l(z — z0)w" (z0) + -+ - . (G.37)
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The derivative of the functiom(z) at z; is a uniqgue complex number which depends only
on the positiorzy and we can write it asl(zp) exp(ia(zp)) where A(zp) anda are both
real.

Therefore in the limit ag — 2o equation (G.37) becomes

lim <r’ exp [i(0 — 9)]) = w'(20) = A(z0) exp(ia(z0)), (G.38)

220 r

since the remaining terms on the RHS vanish in the limit. We deduce that

Zli_)ngo (7:) = A(zp), (G.39)
expi(0) — 0o) = explia(zo)], (G.40)

wheref, and{;, are the angles between the tangents and the real axes. Note that the sec-

ond of these equations can be derived only wHeg: 0. The value ofd — 6’ becomes
indeterminate ifA = 0 so we must therefore demand théf =) # 0.

The second of the above limits, when it exists, showsahat 6y + a(z), that is the
tangent atP is rotated by an angle when it is mapped to the-plane. This will be true
of all curves through P and consequently the angle of intersection of any two curves will be
preserved under the mapping. This is the definition of a conformal mapping.

For a given measurement accuracy we can always find an infinitesimal region @ound
in which the variation ofd and« is imperceptible. Equations (G.39,G.40) then imply that

the small region is scaled and rigidly rotated, so preserving its shape. This is the property

of orthomorphism.
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References and Bibliography

This short bibliography lists some of the papers and books that | found useful in preparing
this article. A more extensive list with hypertext links will be published in due course. In
addition a Wikipedia search on ‘geodesy’, ‘cartography’, ‘Mercator’, ‘NGGB’, ‘UT8¢.

will generate a great many relevant web pages. On such subjects these Wikpedia pages are
faily reliable (but not infallible) and most topics can be verified by following up the many
references.

Geodesy

In addition to the Wiki pages we select only two.

« The American Practical Navigator/Chapter 2 at
http://www.answers.com/topic/the-american-practical-navigator-chapter-2
This is a good elementary discussion in practical terms.

« The Ordnance Survey of Great Britain (OSGB) have an excellent web site on which
can be foundA guide to coordinate systems in Great Britaifihis article discusses
modern approaches to reference systems. It can be found at:
http://www.ordnancesurvey.co.uk/oswebsite/gps/information/index.html

This article mentions geodesy only briefly in the introduction. Those who wish to go (much)
deeper can consult the following texts:

o CLARKE, A R (1880),GeodesyClarendon Press, Oxford.

A classic which is old enough to be very clear! Clarke discusses techniques which are
now very outmoded but this is still a fascinating insight to the work of a nineteenth
geodesist. Particularly interesting chapters show how survey results are combined to
define the figure of the Earth. Clarke’s ellipsoid of 1866 was the basis of the United
States map projections until very recently.

« BOMFORDG, (1971 and later)eodesyClarendon Press, Oxford.

A more modern classic: comprehensive but heavy going. The earlier editions cover
traditional (land-based) methods but the later editions have a fair amount on satellite
techniques. Expensive to get hold of this book.
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o TORGEW, (1980),Geodesyde Gruyter)SBN-13: 978-3110170726. (3rd edition)

Clear but fairly advanced survey based on modern satellite methods. The latest edition
is available in a reasonably priced paperback format.

General cartography and projections

There are not many textbooks which cover the more mathematical aspects of projections
but the following is a good text at an intermediate level covering the general features of all
projections and details of some. The mathematics is not too demanding but does not extend
to a derivation of the full Redfearn formulae. Lots of interesting material.

e MALING D H,
(1992),Coordinate Systems and Map Projectipns
PergamonisaN: 0-08-037234-1.

The following is a comprehensive summary of just about all projections in use, including
of courseall the Mercator projections: normal, transverse and oblique. The introductions
to the projections are very readable and moreover each is complemented with an historical
survey. BUT there are no derivations of any projection formulae.

e« SNYDERJ P, (1987),
Map Projections: a Working Manual
US Geological Survey, Professional Paper 1395
Published by US Government Printing Office but also available on the web at:
http://pubs.er.usgs.gov/usgspubs/pp/pp1395

For a more advanced treatment covering all projections (but with many gaps in the mathe-
matical development requiring large amounts of work to fill in):

o BUGAYEVSKIY L M AND SNYDER J P, (1995),
Map Projections: A Reference Manual
CRC PressisBN: ISBN 0748403043.

The article referred to in the geodesy sectidguide to coordinate systems in Great
Britain, also includes a statement of the transverse Mercator projection formulae (with-
out derivations) with examples of transforming between grid and geographical coordinates.
There is also an excellent (short) Wikipedia page entitled ‘British National Grid Reference
System’ which gives a direct link to the above article.

Survey Review (SR)

The Survey Review was the principal British source of papers on surveying and cartogra-
phy at the time (mid twentieth century) when the first modern British maps based on the
transverse Mercator projection were being prepared by the OSGB. Note that until 1962 the
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journal was entitled the Empire Survey Review. Note also that this journal is published in
parts (from four to eight a year) and bound in two year periods so both volume and part
number are specified. Sadly this journal is not readily available in general libraries.

Two important papers are listed below. The first, by Lee, is the first article in the journal
to present a correct derivation of the Transverse Mercator projection formulae. The second
paper, by Redfearn, presents a derivation of the series to high enough order to be applicable
to all practical problems. By one of those quirks of fate it is Redfearn’s name that has en-
tered the literature. The set of papers by Hotine present a much less elegant derivation which
refuses to countenance the existence of complex variable methods: they are not discussed
here.

o« LEEL P, (1946), Survey Review, V@, Part 58 pp 142-152.
The transverse Mercator projection of the spheroid. (Errata and comments&n Vol
Part 61 pp 277-278).

« REDFEARNJ C B, (1948), Survey Review, V8| Part 69 pp 318-322.
Transverse Mercator formulae.

« HOTINE, M (1946, 1948), Survey Review, V@8, Part 62 pp 301-311 and V8|
Part 63 pp 29-35, Part 64 pp 52—-70, Part 65 pp 112-123, Part 66 pp 157-166.
The orthomorphic projection of the spheroid, parts I-V.

It should be said at once that these papers are fairly terse when it comes to the derivations
of the projection formulae. The present article errs in the other direction and it is fair to say
that no extra details will be found in the original papers. Note also that this article uses a
different convention for the names of axes; basicalgndy are exchanged.

The discussion of geodesic problems in Chapter 11 includes a greatly expanded version of
the following paper:

e VINCENTY, T (1976), Survey Review, V&3, Part 176 pp 88-93.
Direct and inverse solutions of geodesics on the ellipsoid with applications of nested
tables.

Mathematics

The appendices include all the mathematics we require and a little more besides. They are
derived from first principles and should hopefully not require further background reading.
In their preparation | found that modern texts were not helpful on the whole because they
were too distant from application. The older books were much more useful. A few texts are
listed here.

Spherical Trigonometry

e SMART W M, (1962), Textbook on spherical astronom@ambridge.
First chapter is a compact survey of Spherical Trigonometry.



R.4 References R. References and Bibliography

o TODHUNTERI, (1859 ...1901)Spherical TrigonometryMacmillan (London).

A splendid traditional account of the subject. Many editions. Final edition (1901)
revised by J G Leathem is best. An earlier edition is on the web at the Cornell centre
for Historical Mathematical Monographs:

http://historical.library.cornell.edu/math/

« EucLID, The elements
Book 11 contains results required by Todhunter. There are several good references in
the Wikipedia page for Euclid. One of the nicest is a website by David Joyce at Clark
university:
http://aleph0.clarku.edu/ djoyce/java/elements/toc.html

Differential Geometry

« WEATHERBURN C E, (1939) Differential GeometryCambridge.

An old, but good, straightforward account in approachable notation. Modern texts
tend to set up much more ‘elaborate’ machinery before encountering reality.

Lagrange Expansions

The derivation of the Lagrange expansions has essentially disappeared from modern texts.
The proof in Appendix B is a combination of

o WHITTAKER C E, (1902) Modern AnalysisCambridge.
« COPSONE T, (1935),Theory of Functions of a Complex Variap{@xford
The twelfth order Lagrange series are published in the Philosophical Magazine.

e BICKLEY W G, MILLER J C P, (1949Phil Mag 3 35-36.
Notes on the reversion of a series.
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analytic functions, G.4 metric, 5.10
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calculus of variations, F.1 ellipsoid of revolution, 1.1
cartography, 1.4, R.2 equal area projection, 1.5, 2.10
Cauchy—-Riemann conditions, 3.12, 4.7, 4.18uler's formula, 5.9, A.8
7.6,8.1,G.5 Euler-Lagrange equations, F.2
Clarke(1866) ellipsoid, 1.2, 1.3
complex variables, 4.4-4.13, 8.4, G.1 false origin, 9.2
conformal latitude, 5.4, 6.8, 6.9 figure of the Earth, 1.1
conformal projection, 1.5 fixed point iteration, 5.5, 6.5
conformality flattening, 1.2, 5.2
analytic functions, G.7 footpoint, 3.8
conditions,seeCauchy—Riemann footpoint latitude, 3.8, 7.2
scale isotropy, 3.12 footpoint parameter, 4.3, 7.2
convergenceseegrid convergence
curvature, 5.7, A.1-A.9 Gall projection, 2.10
curvature quotieng, 5.9 Gauss, 1.9
Gauss—Kiiger projection, 1.9
datum, 1.2 geocentric latitude, 5.1
GRS80, 1.2 geodesic, 2.2, 2.3
ID1830, 1.3 ellipsoid, 1.11
NAD27,1.3 sphere, 1.11
NADS83, 1.3 geodesy, 1.1, R.1
0OSGB36, 1.3 geodetic latitude, 5.1
WGS72,1.2 geoid, 1.1
degree—radian conversion, 2.1 graticule, 1.6, 3.2
distance on the sphere, 2.2 Greenland, size, 2.8
double projections, 6.7 grid bearing, 1.6, 2.6, 3.9, 3.10, 8.2
grid convergence, 1.6, 3.9, 3.10, 8.2, 8.6, 9.10
eastings and northings, 9.4 grid north, 3.10
eccentricity, 5.2 grid origins, true and false, 9.1
ellipsoid grid reference system, 9.4, 9.7
Airy1830, 1.2, 2.2, 5.2 GRS(1980) ellipsoid, 1.2

Clarke1866, 1.2
curvature, 5.7, A.3 Halley, Edmond, 1.9
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