Welcome
Guest
, you are in:
<root>
•
Login
MUST Creative Engineering Laboratory
Navigation
Main Page
All Pages
Categories
Random Page
Navigation Paths
Technical Doc
바로씨(BaorSee)
고고피알
Inply
MWSF
MWSM
MWTC
MWMC
MWPC
mQR
mMap
mGPIN
mSiren
mNotice
μSearch
MUST Ucc
Create a new Page
File Management
Administration
Create Account
Search the wiki
»
MUST Corp.
www.must.or.kr
Page History: Fuzzy set approaches
Compare Page Revisions
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Current
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
« Older Revision
-
Back to Page History
-
Newer Revision »
Page Revision: 2010/06/12 13:33
Fuzzy set approaches
Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as using fuzzy membership graph)
Attribute values are converted to fuzzy values
- e.g., income is mapped into the discrete categories {low, medium, high} with fuzzy values calculated
For a given new sample, more than one fuzzy value may apply
Each applicable rule contributes a vote for membership in the categories
Typically, the truth values for each predicted category are summed
Introduce
컴퓨터를 인간에 가깝게 하는 일의 어려움
- 퍼지 이론: 애매함을 처리하는 수리 이론
Fuzzy logic
“X”가 “A”라는 집합 A(X)에 속하는 정도를 0과 1 사이의 숫자로 표현 예)
A
(X)=0.7
Crisp logic
- 전체 집합 X를 두 개의 Group, 즉 부분집합 A⊆X에 속하고 있는 요소와 속하고 있지 않는 요소에 이분하는 특성함수(characteristics function)에 의해 정의된다
MUST Creative Engineering Laboratory
Copyright © 2010 MUST Corp. All rights reserved.
must@must.or.kr
This Program is released under the GNU General Public License v2.
View the GNU General Public License v2
or visit the
GNU
website.