Welcome Guest, you are in: Login

MUST Creative Engineering Laboratory

RSS RSS

Navigation



Technical Doc



Search the wiki
»

MUST Corp.

MUST Corp.

www.must.or.kr

 Microsoft CERTIFIED Partner Software Development, Web Development, Data Platform

 Microsoft Small Business Specialist

MCSD

Microsoft Certified IT Professional

Microsoft Certified Professional Developer

Page History: Fuzzy set approaches

Compare Page Revisions



« Older Revision - Back to Page History - Newer Revision »


Page Revision: 2010/06/12 13:33


Fuzzy set approaches

  • Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as using fuzzy membership graph)
  • Attribute values are converted to fuzzy values
    - e.g., income is mapped into the discrete categories {low, medium, high} with fuzzy values calculated
  • For a given new sample, more than one fuzzy value may apply
  • Each applicable rule contributes a vote for membership in the categories
  • Typically, the truth values for each predicted category are summed

Introduce

  • 컴퓨터를 인간에 가깝게 하는 일의 어려움
    - 퍼지 이론: 애매함을 처리하는 수리 이론

  • Fuzzy logic
    “X”가 “A”라는 집합 A(X)에 속하는 정도를 0과 1 사이의 숫자로 표현 예)  A(X)=0.7

  • Crisp logic
    - 전체 집합 X를 두 개의 Group, 즉 부분집합 A⊆X에 속하고 있는 요소와 속하고 있지 않는 요소에 이분하는 특성함수(characteristics function)에 의해 정의된다

MUST Creative Engineering Laboratory

ImageImage Image Image

Image Image Image Image Image Image Image

Copyright © 2010 MUST Corp. All rights reserved. must@must.or.kr
This Program is released under the GNU General Public License v2. View the GNU General Public License v2 or visit the GNU website.